## ----load species------------------------------------------------------------- library(OpenRange) pcontorta <- OpenRange_load_species(species = "Pinus contorta") plot(pcontorta[2]) ## ----get metadata------------------------------------------------------------- library(tidyverse) # Grab the stats model_stats <- OpenRange_get_stats() # Reformat them into a single table model_stats_wide <- bind_rows(model_stats$rangebagging %>% mutate(algorithm = "rangebagging"), model_stats$ppm %>% mutate(algorithm = "ppm"), model_stats$points %>% mutate(algorithm = "points")) # Get relevant model stats model_stats_wide %>% filter(model_id == pcontorta$model_id)->test test %>% select(cv_mean_train_npresence,cv_mean_test_n_presence,cv_mean_test_auc,cv_mean_train_auc)