## ---- eval=FALSE-------------------------------------------------------------- # library(MixSIAR) # mixsiar.dir <- find.package("MixSIAR") # paste0(mixsiar.dir,"/example_scripts") ## ---- eval=FALSE-------------------------------------------------------------- # source(paste0(mixsiar.dir,"/example_scripts/mixsiar_script_killerwhale.R")) ## ----------------------------------------------------------------------------- library(MixSIAR) ## ----------------------------------------------------------------------------- # Replace the system.file call with the path to your file mix.filename <- system.file("extdata", "killerwhale_consumer.csv", package = "MixSIAR") mix <- load_mix_data(filename=mix.filename, iso_names=c("d13C","d15N"), factors=NULL, fac_random=NULL, fac_nested=NULL, cont_effects=NULL) ## ----------------------------------------------------------------------------- # Replace the system.file call with the path to your file source.filename <- system.file("extdata", "killerwhale_sources.csv", package = "MixSIAR") source <- load_source_data(filename=source.filename, source_factors=NULL, conc_dep=FALSE, data_type="means", mix) ## ----------------------------------------------------------------------------- # Replace the system.file call with the path to your file discr.filename <- system.file("extdata", "killerwhale_discrimination.csv", package = "MixSIAR") discr <- load_discr_data(filename=discr.filename, mix) ## ---- eval=FALSE-------------------------------------------------------------- # # Make an isospace plot # plot_data(filename="isospace_plot", plot_save_pdf=TRUE, plot_save_png=FALSE, mix,source,discr) ## ---- eval=FALSE-------------------------------------------------------------- # # Plot uninformative prior # plot_prior(alpha.prior=1, source, filename = "prior_plot_kw_uninf") # # # Define model structure and write JAGS model file # model_filename <- "MixSIAR_model_kw_uninf.txt" # Name of the JAGS model file # resid_err <- TRUE # process_err <- TRUE # write_JAGS_model(model_filename, resid_err, process_err, mix, source) # # # Run the JAGS model ("very long" took ~5 min) # jags.uninf <- run_model(run="test",mix,source,discr,model_filename) # # jags.uninf <- run_model(run="very long",mix,source,discr,model_filename) # # # Process diagnostics, summary stats, and posterior plots # output_JAGS(jags.uninf, mix, source) ## ---- eval=FALSE-------------------------------------------------------------- # # Our 14 fecal samples were 10, 1, 0, 0, 3 # kw.alpha <- c(10,1,0,0,3) # # # Generate alpha hyperparameters scaling sum(alpha)=n.sources # kw.alpha <- kw.alpha*length(kw.alpha)/sum(kw.alpha) # # # the Dirichlet hyperparameters for the alpha.prior cannot be 0 (but can set = .01) # kw.alpha[which(kw.alpha==0)] <- 0.01 # # # Plot your informative prior # plot_prior(alpha.prior=kw.alpha, # source=source, # plot_save_pdf=TRUE, # plot_save_png=FALSE, # filename="prior_plot_kw_inf") # # # Define model structure and write JAGS model file # model_filename <- "MixSIAR_model_kw_inf.txt" # Name of the JAGS model file # resid_err <- TRUE # process_err <- TRUE # write_JAGS_model(model_filename, resid_err, process_err, mix, source) # # # Run the JAGS model ("very long" took ~5 min) # jags.inf <- run_model(run="test",mix,source,discr,model_filename,alpha.prior=kw.alpha) # # jags.inf <- run_model(run="very long",mix,source,discr,model_filename,alpha.prior=kw.alpha) # # # Process diagnostics, summary stats, and posterior plots # output_JAGS(jags.inf, mix, source)