## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE, fig.width = 5.5, fig.height = 4.5 ) ## ----------------------------------------------------------------------------- library(MetricsWeighted) # The data y_num <- iris[["Sepal.Length"]] fit_num <- lm(Sepal.Length ~ ., data = iris) pred_num <- fit_num$fitted weights <- seq_len(nrow(iris)) # Performance metrics rmse(y_num, pred_num) rmse(y_num, pred_num, w = rep(1, length(y_num))) # same rmse(y_num, pred_num, w = weights) # different mae(y_num, pred_num) medae(y_num, pred_num, w = weights) # MSE = mean normal deviance = mean Tweedie deviance with p = 0 mse(y_num, pred_num) deviance_normal(y_num, pred_num) deviance_tweedie(y_num, pred_num, tweedie_p = 0) # Mean Poisson deviance equals mean Tweedie deviance with parameter 1 deviance_poisson(y_num, pred_num) deviance_tweedie(y_num, pred_num, tweedie_p = 1) # Mean Gamma deviance equals mean Tweedie deviance with parameter 2 deviance_gamma(y_num, pred_num) deviance_tweedie(y_num, pred_num, tweedie_p = 2) ## ----------------------------------------------------------------------------- # The data y_cat <- iris[["Species"]] == "setosa" fit_cat <- glm(y_cat ~ Sepal.Length, data = iris, family = binomial()) pred_cat <- predict(fit_cat, type = "response") # Performance metrics AUC(y_cat, pred_cat) # unweighted AUC(y_cat, pred_cat, w = weights) # weighted logLoss(y_cat, pred_cat) # Log loss = binary cross-entropy deviance_bernoulli(y_cat, pred_cat) # Log Loss * 2 ## ----------------------------------------------------------------------------- summary(fit_num)$r.squared # Same r_squared(y_num, pred_num) r_squared(y_num, pred_num, deviance_function = deviance_tweedie, tweedie_p = 0) ## ----------------------------------------------------------------------------- ir <- iris ir$pred <- predict(fit_num, data = ir) # Create multiple Tweedie deviance functions multi_Tweedie <- multi_metric(deviance_tweedie, tweedie_p = c(0, seq(1, 3, by = 0.2))) perf <- performance( ir, actual = "Sepal.Length", predicted = "pred", metrics = multi_Tweedie, key = "Tweedie_p", value = "deviance" ) head(perf) # Deviance against p plot(deviance ~ as.numeric(as.character(Tweedie_p)), data = perf, type = "s") ## ----------------------------------------------------------------------------- y <- 1:10 two_models <- cbind(m1 = 1.1 * y, m2 = 1.2 * y) murphy_diagram(y, two_models, theta = seq(0.9, 1.3, by = 0.01))