# Package 'MaddisonData'

November 24, 2025

Title Maddison Project Data

Version 1.0.2

Date 2025-11-20

Description Relatively easy access is provided to Maddison project data, which collates all the credible data on population and GDP for 169 countries, with some dating back to the year 1. 'MaddisonLeaders' makes it easy to find the leaders for each year, allowing users to delete countries like OPEC with narrow economies to focus on the technology leaders. 'ggplotPath' makes it easy to plot data for only selected countries or years.

License MIT + file LICENSE

URL https://github.com/sbgraves237/MaddisonData

BugReports https://github.com/sbgraves237/MaddisonData/issues

**Depends** R (>= 4.1)

**Suggests** ggplot2, ipumsr, KFAS, knitr, lubridate, readxl, rmarkdown, testthat (>= 3.0.0), tibble, usethis

VignetteBuilder knitr

Config/testthat/edition 3

**Encoding** UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

**Author** Spencer Graves [aut, cre] (ORCID:

<https://orcid.org/0009-0005-5387-729X>)

Maintainer Spencer Graves <spencer.graves@effectivedefense.org>

Repository CRAN

**Date/Publication** 2025-11-24 18:10:08 UTC

2 getMaddisonSources

## **Contents**

| getMaddisonSources | <br> | <br>2   |
|--------------------|------|---------|
| ggplotPath         | <br> | <br>3   |
| logMaddison        | <br> | <br>5   |
| MadDateRanges      | <br> | <br>· 6 |
| MaddisonCountries  | <br> | <br>· 6 |
| MaddisonData       | <br> | <br>7   |
| MaddisonLeaders    | <br> | <br>8   |
| MaddisonSources    | <br> | <br>9   |
| path_package2      | <br> | <br>11  |
|                    |      | 13      |
|                    |      |         |

getMaddisonSources

Get Maddison sources

#### **Description**

Index

The Maddison project collates historical economic statistics from many sources.

They have a citation policy: CONDITIONS UNDER WHICH ALL ORIGINAL PAPERS MUST BE CITED:

a) If the data is shown in any graphical form b) If subsets of the full dataset that include less than a dozen (12) countries are used for statistical analysis or any other purposes

When neither a) or b) apply, then the MDP as a whole can be cited.

getMaddisonSources returns a data.frame of relevant sources for a particular application.

#### Usage

```
getMaddisonSources(
   ISO = NULL,
   plot = TRUE,
   sources = MaddisonData::MaddisonSources,
   years = MaddisonData::MaddisonYears
)
```

## Arguments

IS0

either NULL to return all sources or a character vector of ISO codes for the countries included in the analysis or a data.frame with the first column being the ISO codes followed by yearBegin and optionally yearEnd.

plot

logical indicating whether the use does not does not include plotting data. The Maddison project requires citing all relevant MaddisonSources if they are plotted, denoted here by plot = TRUE. If no data are plotted, then the Maddison project requires citing all sources only if less than a dozen are used, denoted here by plot = FALSE, in which case, the Maddison project requires a specific project-level citation. Default = TRUE.

ggplotPath 3

sources list of sources in the format of MaddisonSources; default is MaddisonSources.

years data.frame in the format of MaddisonYears; default is MaddisonYears.

#### Value

```
a tibble::tibble with 3 columns:

ISO 3-letter ISO code for country.

years character vector of years or year ranges for which source applies.
source character vector of sources.

in the format of MaddisonSources.
```

#### **Examples**

ggplotPath

ggplot paths

## **Description**

ggplotPath plots y vs. x (typically year) with a separate line for each group with options for legend placement, vertical lines and labels.

#### Usage

```
ggplotPath(
  x = "year",
  y,
  group,
  data,
  scaley = 1,
  logy = TRUE,
  legend.position,
  vlines,
  labels
)
```

4 ggplotPath

#### **Arguments**

```
name of column in data to pass as x in aes(x=.data[[x]], ...); default =
Х
                 year.
У
                 name of column in data to pass as y in aes(y=.data[[y]], ...); must be
                 supplied.
                  name of grouping variable, i.e., plot a separate line for each level of group using
group
                  aes(group=.data[[group]], ...), unless group is missing or length(unique(data[,
                  group]) = 1.
data
                  data.frame or tibble::tibble with columns x, y, and group.
                 factor to divide y by for plotting. Default = 1, but for data in monetary terms,
scaley
                 e.g., for MaddisonData, y = 'gdppc' is Gross domestic product (GDP) per capita
                 in 2011 dollars at purchasing power parity (PPP), for which we typically want
                  scaley = 1000.
                 logical: if TRUE, y axis is on a log scale; default = TRUE.
logy
legend.position
                 argument passed to ggplot2::theme. Default depends on nGps <- length(unique(data[, group]:
                 If nGps = 1, there is no legend. If nGps > 10, legend.position = 'right'.
                 In between, legend.position = c(.15, .5) = center left. For alternatives, see
                  ggplot2::theme.
vlines
                 = locations on the x axis for vertical lines using ggplot2::geom_vline(aes(xintercept
                 = .data[[x]]), data=vlines, ...) with color='grey', lty='dotted' un-
                 less color or colour and / or lty are available as attr(x, ...).
labels
                 = data.frame with columns x, y, label, srt, col, where x, y, and srt
                  are numeric, label is character, and col are acceptable values for color in
                 with(labels, annotate('text', x=x, y=y, label = label, srt=srt, color=col)).
```

#### Value

an object of class ggplot2::ggplot, which can be subsequently edited, and whose print method produces the desired plot.

logMaddison 5

```
vlines=Vlines, labels=ISOll) )
```

logMaddison

Select countries and add logged variables

## Description

logMaddison returns a tibble::tibble of data on selected countries extracted from MaddisonData, appending columns lnGDPpc and lnPop = natural logarithms of gdppc and pop.

## Usage

```
logMaddison(ISO = NULL)
```

## **Arguments**

IS0

either NULL to select all the data in MaddisonData or a character vector of ISO codes used in the Maddison project.

#### Value

```
a tibble::tibble with 6 columns:

ISO 3-letter ISO code for countries selected

year numeric year in the current era.

gdppc Gross domestic product per capita adjusted for inflation to 2011 dollars at purchasing power parity.

pop Population, mid-year (thousands)

InGDPpc log(gdppc)

InPop log(pop)
```

```
logMaddison() # all
logMaddison(c('GBR', 'USA')) # GBR, USA
```

6 MaddisonCountries

MadDateRanges

Convert a vector of date ranges into a data.frame

#### **Description**

MadDateRanges returns a data. frame with 3 numeric columns: yearBegin, yearEnd, and sourceNum from the vector of dateRanges associated with different sources in MaddisonSources.

### Usage

```
MadDateRanges(dateRanges)
```

## **Arguments**

dateRanges

character vector of date ranges, each associated with a different source.

#### Value

```
a data.frame with 3 columns

yearBegin, yearEnd numeric years

sourceNum 1, 2, 3, ... for the location in dateRanges
```

## **Examples**

MaddisonCountries

Maddison Project data

## Description

The Maddison project collates historical economic statistics from many sources. MaddisonCountries is a data. frame of all (countrycode, country, region) combinations in those data.

## Usage

MaddisonCountries

MaddisonData 7

#### **Format**

```
MaddisonCountries:
A data frame with 3 columns:

ISO 3-letter ISO country code

country Country name used by the Maddison project

region Geographic region including country

Its rownames = ISO.
```

#### Source

https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020? lang=en"Groningen Growth and Development Centre"

## **Examples**

```
# Get the country for a countrycode (IS)
subset(MaddisonCountries, ISO=='GBR', country)
# Or
MaddisonCountries['GBR', 'country']
# Find Yugoslavia
subset(MaddisonCountries, grepl('Yugo', country), 1:3)
# number of countries by region
table(MaddisonCountries$region)
# What are "Western Offshoots"?
subset(MaddisonCountries, grepl('Of', region), c(country, ISO))
```

MaddisonData

Maddison Project data

## **Description**

The Maddison project collates historical economic statistics from many sources. MaddisonCountries is a data. frame of all (countrycode, country, region) combinations in those data.

#### Usage

MaddisonData

#### Format

```
MaddisonData:
```

A data frame with 4 columns:

**ISO** 3-letter ISO country code

year numeric year starting with year 1 CE

**gdppc** Gross domestic product (GDP) per capita in 2011 dollars at purchasing power parity (PPP)

pop Population, mid-year (thousands)

8 MaddisonLeaders

## Source

https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020? lang=en"Groningen Growth and Development Centre"

## **Examples**

```
# Get the countrycode for a country
subset(MaddisonCountries, country=='United Kingdom', ISO)
# Select
str(GBR <- MaddisonData[MaddisonData$ISO=='GBR', ])</pre>
```

MaddisonLeaders

Plot selected countries

## **Description**

MaddisonLeaders computes the countries with the highest gdppc for each year.

## Usage

```
MaddisonLeaders(
  except = character(0),
  y = "gdppc",
  group = "ISO",
  data = MaddisonData::MaddisonData,
  x = "year"
)
```

## **Arguments**

| except | either NULL to select all the data in MaddisonData or a character vector of group codes to EXCLUDE, e.g., so the result reflects apparent technology leaders, excluding countries whose high gdppc may be due to a dominant position in a single commodity. |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| у      | name of column in data to consider. Default = gdppc.                                                                                                                                                                                                        |
| group  | name of column in data as the grouping variable. Default = ISO.                                                                                                                                                                                             |
| data   | data.frame or tibble::tibble with first two columns being ISO and year and y being the name of another column.                                                                                                                                              |
| x      | time variable. Default = year.                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                                                                                             |

#### Value

an data. frame with columns

```
paste0(x, 'Begin),paste0(x, 'End'),
```

MaddisonSources 9

```
paste0(y, '0'),paste0(y, '1'), and{{group}}
```

#### (defaults:

- yearBegin,
- yearEnd,
- gdppc0,
- gdppc1, and
- ISO, plus
- dy0 = paste0(x, 'End') paste0(x, 'Begin') and
- dy1 = c(tail(paste0(x, 'Begin'), -1) head(paste0(x, 'End'), -1), NA) (defaults: dy0 = yearEnd- yearBegin and dy1 = c(tail(yearBegin, -1) head(yearEnd, -1), NA))

with an attribute LeaderByYear = a data.frame with columns,  $\{\{x\}\}$ , paste0('max', y), and  $\{\{group\}\}\}$  (defaults: year, maxgdppc, ISO).

#### **Examples**

```
Leaders0 <- MaddisonLeaders() # max GDPpc for each year.

# Presumed technology leaders without commodity leaders with narrow

# economies

Leaders1 <- MaddisonLeaders(c('ARE', 'KWT', 'QAT'))

# since 1600

MadDat1600 <- subset(MaddisonData, year>1600)

Leaders1600 <- MaddisonLeaders(c('ARE', 'KWT', 'QAT'), data=MadDat1600)
```

MaddisonSources

Maddison Project data

## **Description**

The Maddison project collates historical economic statistics from many sources. MaddisonSources is a list of tibble::tibbles with ISO names giving the sources of GDP per capita for different years for the said country.

MaddisonYears is a data.frame giving yearBegin and yearEnd and the number of each source in MaddisonSpources for each ISO.

#### Usage

MaddisonSources

MaddisonYears

10 MaddisonSources

#### **Format**

MaddisonSources:

A named list of tibble::tibbles, one for each country, named with the ISO country codes. Each tibble has one row for each source for the indicated ISO and two columns:

years character variable of year(s) for this source starting with year 1 CE.

source character variable giving the source for the years described.

In addition, MaddisonSources has an attribute since2008, which says, "gdppc since 2008: Total Economy Database (TED) from the Conference Board for all countries included in TED and UN national accounts statistics for all others."

MaddisonYears:

A data, frames with 4 columns:

**ISO** 3-letter country code.

yearBegin, yearEnd Integer year begin and end for each source.

**sourceNum** Integer of the source within MaddisonSources[[ISO]].

An object of class data. frame with 133 rows and 4 columns.

#### Source

https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020? lang=en"Groningen Growth and Development Centre"

```
MaddisonSources[['GBR']]
MaddisonSources[['GBR']][, 1, drop=TRUE]
\# = c('1', '1252-1700 (England)', '1700-1870')
# for data from the year 1
# and for England only between 1252 and 1700, etc.
MaddisonSources[['IRN']][, 1, drop=TRUE]
# = '1820, 1870, 1913, 1950'
# for those 4 years only.
MaddisonSources[c('GBR', 'USA')]
MaddisonSources[['GBR']][, 1, drop=TRUE]
\# = c('1', '1252-1700 (England)', '1700-1870')
MaddisonYears[MaddisonYears$ISO=='GBR', ] =
data.frame(
ISO=rep('GBR', 3),
yearBegin=c(1, 1252, 1700),
yearEnd =c(1, 1700, 1870),
sourceNum=1:3
)
MaddisonSources[['EGY']][, 1, drop=TRUE]
```

path\_package2

```
# = c('1', '700 - 1500', '1820, 1870, 1913, 1950')
MaddisonYears[MaddisonYears$ISO=='EGY', ] =
data.frame(
ISO=rep('EGY', 6),
yearBegin=c(1, 700, 1820, 1870, 1913, 1950),
yearEnd =c(1, 1500, 1820, 1870, 1913, 1950),
sourceNum=c(1, 2, rep(3, 4))
)
```

path\_package2

Construct a path to a location within an installed or development package

#### **Description**

path\_package2 returns a character vector of matches to target. It differs from system.file() in that it supports searching for a target file or folder possibly in subdirs of the working directory or in nparents of its parents.

#### Usage

```
path_package2(
  target,
  package = NULL,
  nparents = 1,
  subdirs = c("extdata", paste("inst", "extdata", sep = .Platform$file.sep))
)
```

## **Arguments**

A regular expression describing the file of folder desired.

Name of the package to in which to search. If NULL, search in the working directory. Otherwise search in system.file(package).

nparents integer indicate the number of parents of the working directory in which to search; default = 1.

subdirs = c('extdata', paste('inst', 'extdata', sep=.Platform\$file.sep))

#### **Details**

This works in a vignette searching for a target that could be in the vignettes directory of its parent package or in the package directory or in, e.g., one of subdirs = c('extdata', paste('inst', 'extdata', sep=.Platform\$file.sep)).

Returns the full path to match(s) if found and a character vector of length 0 if no matches are found. The returned object also has a searched attribute being a character vector of the directories searched.

path\_package2

This was inspired by a desire to share with others a vignette describing how to create data objects from a file that could not itself be shared on CRAN. This is not easy, because the working director available to code in a vignette changes depending on how that code is run.

path\_package2 allows the user to store the target locally, e.g., in inst/extdata but include it in .gitignore to prevent it from leaving the local computer. The vignette then decides what to do after calling path\_package2() based on the length of the the object returned.

#### Value

a character vector with an attribute searched giving the full paths of all directories searched for target.

```
# search for a file matching a regular expression
path_package2('^mpd.*xlsx$')
# search only in the working directory
path_package2('^mpd.*xlsx$', nparents=0, subdirs=character(0))
```

# **Index**

```
* datasets
    MaddisonCountries, 6
    MaddisonData, 7
    MaddisonSources, 9
* file
    path_package2, 11
* manip
    {\tt getMaddisonSources}, {\tt 2}
    logMaddison, 5
    MadDateRanges, 6
    MaddisonLeaders, 8
* plot
    ggplotPath, 3
data.frame, 2, 4, 6-10
getMaddisonSources, 2
ggplot2::ggplot,4
ggplot2::theme, 4
ggplotPath, 3
list, 9
logMaddison, 5
MadDateRanges, 6
MaddisonCountries, 6
MaddisonData, 7
MaddisonLeaders, 8
MaddisonSources, 3, 6, 9
MaddisonYears, 3
MaddisonYears (MaddisonSources), 9
path_package2, 11
print, 4
system.file(), 11
tibble::tibble, 3–5, 8–10
```