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1 Introduction

In this vignette we use the InformativeCensoring R library to perform the multiple imputation (MI)
method of Chiu-Hsieh Hsu and Jeremy Taylor [1], which in this package is called ‘risk-score imputation’.
The purpose of the imputation method is two fold. First, to attempt to remove bias in standard analyses
when it is thought that censoring may be informative. Second, to improve efficiency by imputing events
times for individuals who were censored. The first part of this vignette describes the method and the second
part shows the package in use.

2 Theory

In this section we describe the risk score imputation method and we refer readers to [1] for further details.
Consider a two arm time to event data set where subject i has event time Ti and potential censoring time
Ci. For each subject we observe a time Xi = min(Ti, Ci) and event indicator ∆i which = 1 if the subject
was observed to have had an event at Xi and = 0 otherwise. The independent censoring assumption states
that Ti and Ci are independent, and when this assumption is violated, standard methods for inference are
in general invalidated.

The risk score imputation approach creates multiple imputations of event times for those subjects whose
event times were censored. The imputation procedure utilizes subject level covariates, which may be time-
varying, and relaxes the assumption of independent censoring to an assumption that the event time and
censoring time are conditionally independent given the covariates. This means that covariates which are
known or believed to be related both to the hazard of failure and the hazard of censoring should be included
in the imputation process. Including covariates which are only related to the hazard of failure is also
recommended, as this is expected to increase the efficiency of the resulting inferences.

The method works by generating m imputed event times Y m
i ≥ Xi and event indicators ∆m

i . The data
{Y m

i ,∆m
i } is imputed by creating a risk set of similar subjects to subject i and then using a procedure called

Kaplan-Meier imputation (KMI). The creation of risk sets and the KMI procedure are described below.
Once the M data sets have been imputed, standard time to event statistical analyses (for example the

log rank test) can be applied to each data set and the results combined (as described below) to produce
point estimates of model parameters or to perform a hypothesis test (e.g. of equality of survivor functions).

2.1 Calculation of Risk Set

For each censored subject i we first calculate a risk set R(i+, NN) which contains the nearest NN subjects
to subject i (in the same treatment group) with event/censoring time > Xi, where NN is a user specified
number. When calculating risk sets the separate treatment groups are considered independently. If only
n ≤ NN subjects in the same arm have event/censoring time > Xi then all n subjects are part of the risk
set and if n = 0 no imputation can be made and Y m

i = Xi and ∆m
i = ∆i.
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In order to find the nearest subjects to subject i we use proportional hazards models to reduce the
auxiliary variables of subjects into a pair of risk scores. In the case of only time independent covariates, for
each treatment group independently, we fit a pair of Cox proportional hazard models, one for event times
λf (t) exp(βfV̄f ) (where V̄f is the vector of auxiliary variables used in the Cox model) and one for censored
times λc(t) exp(βcV̄c).

The risk scores for each subject are linear combinations of the auxiliary variables, specifically ˆRSf = β̂fV̄f

and R̂Sc = β̂cV̄c. These risk scores are centred and scaled by subtracting the mean and dividing by their
standard deviation to give normalized scores ( ˆRS∗

f and ˆRS∗
c ). If either model cannot be fitted as all subjects

considered have an event (or all are censored) then ˆRS∗
f (or ˆRS∗

c ) are set to zero for all subjects.
The distance between subjects j and k is then given by

d(j, k) =
√
wf ( ˆRS∗

f (j)− ˆRS∗
f (k))

2 + wc( ˆRS∗
c (j)− ˆRS∗

c (k))
2

where wc is a user specified weighting between 0 and 1 and wf = 1− wc.
The NN subjects with smallest d(i, .) with event/censoring time > Xi form the risk set for subject i1.
For data sets with time dependent covariates, following [1], ‘for every censored observation these two

time-independent proportional hazard models are fitted to the data of those at risk at the censoring time
using the currently available auxiliary variables as fixed covariates’. I include subjects who leave the study at
time > the censored observation and normalize only these scores. There can be problems with convergence
when trying to fit a Cox model to a small number of subjects, therefore a ‘minimum subjects’ option is
included and the simplified example below describes its function:

Suppose the times of leaving the trial are given by 0.5, 1, 2.5, 2.5, 5, 10 and 20 then for the subject
censored at time 10, a Cox model would have been fitted to only the sample 20. If the minimum subjects
parameter is set to 4 then the subjects with time >= 2.5 will be included in the Cox model fit (with time
dependent variables at their values at time 2.5).

2.2 Kaplan-Meier Imputation

In order to impute {Y m
i ,∆m

i } we take the given risk set R(i+, NN) and use KMI. We draw the Kaplan-Meier
estimator of the subjects in the risk set. We then sample U ∼ [0, 1] and take the time at which the KM
estimator equals U (see the Figure below for further details) as the imputed event time.

In certain cases we wish to impute the event time for all subjects; however, in other cases we are interested
in imputing what the data would look like on a given calendar date, the data cut off (DCO) date. For example,
if a subject was recruited 10 days after the study started and was withdrawn 20 days later, we could impute
that the subject and an event after 115 days on the trial. However, if the cutoff date was 100 days after the
trial start date then this event would not have been observed.

For each subject a DCO.time, Di is required. In the example above Di = 90 as after 90 days on the
study the subject would have been censored at the DCO date. In general, if the imputed time Y m

i ≥ Di

then Y M
i = Di and ∆m

i = 0, i.e. the subject is censored at the DCO date2.

2.3 Bootstrapped data to fit the models

The addition of a bootstrapping step ensures that the multiple imputations are proper, such that Rubin’s
rules provide a valid estimate of variance [1]. Specifically, for each imputed data set, proportional hazard
models are fitted to a bootstrapped data set (keeping the same treatment group allocation ratio) and risk
scores are calculated. The risk set for subject i from the original data set is then given by the nearest
neighbours to i in the bootstrapped data set using the calculated risk scores from the newly fitted models.
For each subject i, I calculate the raw risk score for subject i using the fitted models3. I then take this score
and the normalized scores from the (bootstrapped) data set used to fit the model to calculate a normalized
score for subject i (using the same mean and variance normalization factors). These scores can then be used
for risk set identification for subject i.

1If there are ties, so that two subjects are exactly the same distance from subject i and including them both would increase
the size of the risk set to > NN then both are included.

2Note this was not mentioned in [1], however, by setting Di = Inf, the original method can be reproduced– see below
3In the time dependent case, subject i uses the values of its time dependent covariates at its censoring time
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Figure 1: Kaplan-Meier Imputation. In this example, for the KM curve shown, we sampled U = 0.75 and
this implies an imputed event time of 40. If U is less than any value on the KM curve (e.g. if U = 0.1 in
this example) then the subject’s imputed time is the last censored time of the risk set (in this example time
60) and the subject is censored rather than having an event at this time.
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2.4 Test Statistics

Given M imputed data sets, we can perform time to event statistical analyses on each data set. The results
can be combined to give a single p-value estimate in two distinct ways:

• meth1: Each data set produces a single point estimate for the null hypothesis (θ = θ0) and these can
be combined to obtain a single point estimate θ̄ with associated variance V1 = U1+(1+M−1)B1 where
B1 is the sample variance of the M point estimates and U1 is the average of the M variance estimates.
The test statistic D = (θ̄ − θ0)

′V −1
1 (θ̄ − θ0) has a F1,v1

distribution with v1 = 4 + (t − 4)(1 + (1 −
2t−1)/r)2 where t = M − 1 and r = (1+M−1)B1U

−1
1 . Specifically, the p-value is given by the R code

(1-pf(D,1,v1)). Note, the degrees of freedom are given by [2] rather than [1] (which used
4 + (t− 4)(1 + (1− 2t−1)/r)).

• meth2: Each data set produces a (normal) test statistic Z1, Z2, . . . , Zm and these can be averaged
to give an overall test statistic Z̄ with variance V2 = 1 + (1 + M−1)B2 where B2 is the sample
variance of the Zi. A t-test statistic with v2 degrees of freedom can be used to with the statistic
s = Z̄/

√
V2 where v2 = [1+(M/(M +1))/B2]

2(M −1). Specifically, the p-value is given by the R code
2*(1-pt(abs(s),v2)).

We refer the reader to [1] for further details.

3 Using the package

We first load the package and set the seed for reproducibilty:

library(InformativeCensoring)

set.seed(421234)

4 Time Independent Covariates

In this Section we apply the method to time to event data with only time independent covariates.

4.1 Data

We use a simulated data set inspired by the simulation procedure given in [1]. We first load the data:

data(ScoreInd)

head(ScoreInd)

## Id arm Z1 Z2 Z3 Z4 Z5 event time to.impute DCO.time

## 1 1 0 1 0.7956354 0 0.5071207 1 1 0.8723524 FALSE 1.4981742

## 2 2 0 0 0.4482940 0 0.2975735 1 0 0.6155495 TRUE 0.9791961

## 3 3 0 0 0.3153451 1 0.1770421 1 0 1.1929294 TRUE 1.2161512

## 4 4 0 1 0.4998216 1 0.3376044 0 1 2.0661984 FALSE 2.7655619

## 5 5 0 0 0.6134157 1 0.5640466 1 1 0.7885539 FALSE 1.0267005

## 6 6 0 1 0.7215678 1 0.7771897 0 1 2.0486443 FALSE 2.6222115

The data set contains the following columns:

• Id: Subject Id

• arm: Treatment group (0=control, 1=active)

• Z1-Z5: Time independent covariates; Z1, Z3 and Z5 are binary, Z2 and Z4 are real valued
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• event: Event indicator (0=censored, 1=had event), ∆i.

• time: The time the subject was censored/had event (in years), Xi.

• to.impute: Should the subject’s time to event be imputed – if subject had event this column is ignored

• DCO.time: The time the subject would have been censored if they were still on the trial at the data
cutoff time, Di, if an event time is imputed after DCO.time then the subject will be censored at
DCO.time

We ensure that the treatment group flag is a factor and that the control group is the first level

ScoreInd$arm <- factor(ScoreInd$arm)

levels(ScoreInd$arm)

## [1] "0" "1"

The risk score imputation procedure needs to know which columns of the data frame represent subjects’
event indicator, time on study, Id, treatment arm, DCO time and whether times are to be imputed. The
col.headings function is used to setup this information:

col.control <- col.headings(has.event="event", time="time",Id="Id",arm="arm",

DCO.time="DCO.time", to.impute="to.impute")

If administrative censoring is being taken into account then an additional argument is required to the
col.headings function (see later in the vignette for further details).

4.2 Imputed Dataset

We use the ScoreImpute function to generate the imputed data sets:

imputed.data.sets <- ScoreImpute(data=ScoreInd,event.model=~Z1+Z2+Z3+Z4+Z5,

col.control=col.control, m=5,

bootstrap.strata=ScoreInd$arm,

NN.control=NN.options(NN=5,w.censoring = 0.2))

The ScoreImpute function uses the following arguments:

• data The data frame to be used for the imputation

• event.model: The right hand side of the formula for the Cox model fit for the model used to calculate
the time to event scores ( ˆRSf ). The terms cluster and tt cannot be used in the model formula.

• censor.model: The right hand side of the formula for the Cox model fit for the model used to calculate
the time to censoring scores (R̂Sc). If this argument is not used then the event.model argument is
used instead.

• col.control: Key column names of the data set, see Section 4.1 for further details

• m The number of data sets to impute (must be > 4)

• bootstrap.strata When performing the bootstrap procedure to generate the data sets for the model
fits, the strata argument for the bootstrap procedure (see help(boot) for further details).

• NN.control: The options used by the risk score imputation method when calculating the risk set for
each subject. The NN.options function should be used with the following two options:

– NN: The size of the risk set.
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– w.censoring The weighting (wc) to be applied to the censoring score (R̂Sc) when calculating
the distance between subjects. The weighting, wf applied to the event score ( ˆRSf ) is given by
1-w.censoring.

– min.subjects Only used for the time dependent case: the minimum number of subjects to be
included when fitting the Cox models, see help(NN.options) for default value.

• time.dep: Additional data to perform time dependent score imputation method, see Section 5 for
details.

• parallel, ncpus, cl: parallelism options, see help(gammaImpute) and the parallel package vignette
for further details – note when using parallel="multicore" or parallel="snow" it is necessary to set
the random number generator to type L’Ecuyer-CMRG using the command RNGkind("L’Ecuyer-CMRG")
in order to ensure proper random number stream behaviour. A warning is output if this is not the
case, see parallel package vignette for further details.

Any additional arguments are passed to the Cox model fit function (survival::coxph). Note, the subset
and na.action arguments cannot be used (na.fail is used)

Cox model convergence issues: There may be issues with convergence of the various Cox models, es-
pecially in the time dependent case and those with not many data points with lots of covariates. If this
occurs a warning Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :

Ran out of iterations and did not converge is output. It is possible to use ridge regression by includ-
ing a ridge term in the model formula, for example event.model= ∼ Z1+Z2+Z3+Z4+ridge(Z5,theta=1);
see help(ridge) for further details.4

Accessing individual imputed data sets: We use the ExtractSingle function to extract out a single
imputed data set. The index argument is an integer between 1 and m allowing the user to specify which
imputed data set is to be extracted:

#for the third data set

imputed.data.set <- ExtractSingle(imputed.data.sets,index=3)

We can view the imputed data. Note the two new columns, impute.time and impute.event:

head(imputed.data.set$data)

## Id arm Z1 Z2 Z3 Z4 Z5 event time to.impute DCO.time

## 1 1 0 1 0.7956354 0 0.5071207 1 1 0.8723524 FALSE 1.4981742

## 2 2 0 0 0.4482940 0 0.2975735 1 0 0.6155495 TRUE 0.9791961

## 3 3 0 0 0.3153451 1 0.1770421 1 0 1.1929294 TRUE 1.2161512

## 4 4 0 1 0.4998216 1 0.3376044 0 1 2.0661984 FALSE 2.7655619

## 5 5 0 0 0.6134157 1 0.5640466 1 1 0.7885539 FALSE 1.0267005

## 6 6 0 1 0.7215678 1 0.7771897 0 1 2.0486443 FALSE 2.6222115

## impute.time impute.event

## 1 0.8723524 1

## 2 0.6690834 1

## 3 1.2161512 0

## 4 2.0661984 1

## 5 0.7885539 1

## 6 2.0486443 1

4The formula and data get passed into coxph and then predict(coxph.model,type="lp") and
predict(coxph.model,type="lp",newdata=...) are used. For complex formulae it may be worth checking directly
that these functions perform as you expect before using them inside the Score Imputation procedure.
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4.3 Model Fit the Imputed Data

Given the imputed data sets we use the ImputeStat function to fit a model to each data set and we again
use the ExtractSingle to view the individual fit:

logrank.fits <- ImputeStat(imputed.data.sets,method="logrank",

formula=~arm+strata(Z1,Z3))

third.fit <- ExtractSingle(logrank.fits,index=3) #view log rank fit for third data set

print(third.fit)

## Method used: logrank (estimator for O-E)

## Point Estimate: -30.36566

## Variance estimate: 64.3452

## Z stastistic: -3.785512

## Use x$model to view the model fit

The method argument must be one of ‘logrank’, ‘Wilcoxon’5 or ‘Cox’.
In the logrank and Wilcoxon cases the point estimate is for O − E (observed - expected) and the test

statistic Z = O−E√
V

which is standard normal distribution (Z2 is the standard χ2 test statistic). In the Cox

case the point estimate is for the log of the hazard ratio.
When fitting models a formula can be included (only the right hand side of the formula is needed). In

the example below we fit a Cox model with arm and the 5 covariates:

Cox.fits <- ImputeStat(imputed.data.sets,method="Cox",

formula=~arm+Z1+Z2+Z3+Z4+Z5)

ExtractSingle(Cox.fits,index=3)$model

## Call:

## model.function(formula = formula, data = object$data, model = TRUE)

##

## coef exp(coef) se(coef) z p

## arm1 -0.7427 0.4758 0.1321 -5.621 1.9e-08

## Z1 -1.8802 0.1526 0.1532 -12.273 < 2e-16

## Z2 0.2562 1.2920 0.2132 1.202 0.229

## Z3 -1.9431 0.1433 0.1523 -12.754 < 2e-16

## Z4 2.0023 7.4061 0.2291 8.741 < 2e-16

## Z5 2.0668 7.8997 0.1526 13.547 < 2e-16

##

## Likelihood ratio test=376.2 on 6 df, p=< 2.2e-16

## n= 400, number of events= 290

There are a few rules regarding acceptable formulae: the first term must be the treatment group indicator
and there can be no interactions between the treatment group and the other covariates. For the Wilcoxon
and logrank tests only strata terms can be included alongside the treatment group. For the Cox model:
stratified Cox models can be used (e.g. ∼arm+strata(Z1,Z3)), though the cluster and tt terms cannot
be used. Finally if no formula argument is included then a model with only treatment group as a covariate
is used. Other arguments to ImputeStat are passed into the model fitting function.

The ImputeStat function can be parallelized using the same parallel, ncpus and cl arguments as
described above for the ScoreImpute function.

We can view a matrix of the test statistics:

5The Wilcoxon uses the Peto & Peto modification of the Gehan-Wilcoxon test (i.e. survival::survdiff with rho=1)
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Cox.fits$statistics

## estimate var Z

## [1,] -0.7286290 0.01709469 -5.572830

## [2,] -0.6503759 0.01684734 -5.010705

## [3,] -0.7427209 0.01745734 -5.621298

## [4,] -0.7402563 0.01717471 -5.648556

## [5,] -0.7681086 0.01746141 -5.812768

## attr(,"class")

## [1] "ScoreStatSet"

Each row of the matrix is the point estimate, its variance and the test statistic (=estimate/sqrt(var))
from a single imputed data set.

4.4 Calculating Summary Statistics

Summarizing the results averages the test statistics following the two methods described above.

final.answer <- summary(Cox.fits)

print(final.answer)

## Summary statistics of Imputed Data Sets

## Method 1 (averaging of point estimates):

## Estimator: -0.7260181

## Var of Estimator: 0.01960166

## Test statistic: 26.8907

## Distribution: F

## with 1, 4 degrees of freedom

## giving a p-value of 0.006580808

##

## Method 2 (averaging of test statistics):

## Test statistic: -5.246857

## Distribution: t

## with 393.4239 degrees of freedom

## giving a p-value of 2.534479e-07

#can access individual elements of the summary

cat("log HR estimate:", final.answer$meth1$estimate)

## log HR estimate: -0.7260181

Finally we can view the confidence interval on the log hazard ratio:

confint(final.answer, level=0.95)

## 2.5% 97.5%

## -1.0016693 -0.4503669

The confidence interval is estimated using Rubin’s rules [3] to estimate the standard error and number
of degrees of freedom of for the t-distribution.

4.5 Administrative Censoring

By default, both subjects who are administratively and non-administratively censored are deemed to have
‘the event of censoring’ when calculating the cox regression model to calculate R̂Sc. It may be beneficial to
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state that only non-administratively censored subjects have ‘the event of censoring’ when fitting this model.
This is possible by defining a censor type column in the data frame containing the values 0, 1 and 2 where 0
= has event, 1=non-administratively censored and 2=administratively censored. Only subjects with a 1 in
this column will be considered as having ‘the event’ of censoring.

Suppose in our toy example, subjects 2 and 3 were administratively censored. First we set up the new
column of the data frame:

ScoreInd$Ctype <- 1 - ScoreInd$event

ScoreInd$Ctype[ScoreInd$Id %in% c(2,3)] <- 2

Next we use the censor.type argument when creating the column control object:

col.control.a.censor <- col.headings(has.event="event",time="time",Id="Id",

arm="arm",DCO.time="DCO.time",

to.impute="to.impute",

censor.type="Ctype") #Note new arg

The rest of the imputation procedure is exactly as before:

with.a.censor <- ScoreImpute(data=ScoreInd,m=5,

event.model=~Z1+Z2+Z3+Z4+Z5,

censor.model=~Z1+Z3+Z5,

bootstrap.strata=ScoreInd$arm,

col.control=col.control.a.censor,

NN.control=NN.options(NN=5,w.censoring = 0.2))

5 Time Dependent Covariates

It is possible to use this method with time dependent covariates. Specifically, for every censored observation,
two time independent proportional hazard models are fitted to the data of those at risk at the censoring time
using the currently available time dependent variables as fixed covariates [1]. The package can be used with
time dependent variables. First we load a data set of time dependent covariates which can be used with the
ScoreInd data set above.

data(ScoreTimeDep)

head(ScoreTimeDep)

## Id start end W1 W2

## 1 1 0.0 0.2000000 0 1.325036

## 2 1 0.2 0.4000000 0 3.044134

## 3 1 0.4 0.6000000 1 4.951916

## 4 1 0.6 0.8000000 1 6.993584

## 5 1 0.8 0.8723524 1 9.140960

## 6 2 0.0 0.2000000 0 2.477479

The data set has two time dependent covariates W1 and W2 and is in panel format; the value of the
covariate in (start,end] for subject with the given Id is given in each row. In order to use this data set
within the score imputation method we first use the MakeTimeDepScore function with a chosen data frame,
giving three additional arguments, the column names of subject Id and the start and end points of the time
interval for the panelling.
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time.dep <- MakeTimeDepScore(ScoreTimeDep,Id="Id",

time.start="start",

time.end="end")

head(time.dep)

## Id W1 W2 time.start time.end

## 1 1 0 1.325036 0.0 0.2000000

## 2 1 0 3.044134 0.2 0.4000000

## 3 1 1 4.951916 0.4 0.6000000

## 4 1 1 6.993584 0.6 0.8000000

## 5 1 1 9.140960 0.8 0.8723524

## 6 2 0 2.477479 0.0 0.2000000

Using the time.dep argument to ScoreImpute we can impute data using the time dependent covariates
(note the min.subjects argument used to control the minimum number of subjects used when fitting the
Cox models) and the rest of the imputation procedure is exactly as for the time independent case:

imputed.data.with.td <- ScoreImpute(data=ScoreInd,

m=5, bootstrap.strata=ScoreInd$arm,

event.model=~Z1+ridge(W2,theta=1), #Note the W2 and

censor.model=~Z2+ridge(W2,theta=1), #ridge here

col.control=col.control,

NN.control=NN.options(NN=12,w.censoring = 0.2,

min.subjects=35), #min.subjects argument

time.dep=time.dep) #key argument

Note if the time.dep argument is used separate models will be fitted for each censored observation as
described in the introduction and it is possible the Cox model will fail to converge. Ridge regression (e.g
ridge(W2,theta=1) in the example above) can be used when fitting the Cox model. See help(ridge) for
further details.
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