GWlasso: Geographically Weighted Lasso
Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions.
    These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.
| Version: | 
1.0.2 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
dplyr, ggplot2, ggside, glmnet, GWmodel, lifecycle, magrittr, methods, progress, rlang, sf, tidyr | 
| Suggests: | 
knitr, maps, rmarkdown | 
| Published: | 
2025-09-26 | 
| DOI: | 
10.32614/CRAN.package.GWlasso | 
| Author: | 
Matthieu Mulot  
    [aut, cre, cph],
  Sophie Erb   [aut] | 
| Maintainer: | 
Matthieu Mulot  <matthieu.mulot at gmail.com> | 
| BugReports: | 
https://github.com/nibortolum/GWlasso/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/nibortolum/GWlasso,
https://nibortolum.github.io/GWlasso/ | 
| NeedsCompilation: | 
no | 
| Citation: | 
GWlasso citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
GWlasso results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GWlasso
to link to this page.