GPTCM: Generalized Promotion Time Cure Model with Bayesian Shrinkage Priors

Generalized promotion time cure model (GPTCM) via Bayesian hierarchical modeling for multiscale data integration (Zhao et al. (2025) <doi:10.48550/arXiv.2509.01001>). The Bayesian GPTCMs are applicable for both low- and high-dimensional data.

Version: 1.1.1
Depends: R (≥ 4.1.0)
Imports: Rcpp, survival, riskRegression, ggplot2, ggridges, miCoPTCM, loo, mvnfast, Matrix, scales, utils, stats, graphics
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, survminer
Published: 2025-09-16
Author: Zhi Zhao [aut, cre]
Maintainer: Zhi Zhao <zhi.zhao at medisin.uio.no>
BugReports: https://github.com/ocbe-uio/GPTCM/issues
License: GPL-3
Copyright: The code in src/arms.cpp is slightly modified based on the research paper implementation written by Wally Gilks.
URL: https://github.com/ocbe-uio/GPTCM
NeedsCompilation: yes
SystemRequirements: C++17
Citation: GPTCM citation info
Materials: README, NEWS
CRAN checks: GPTCM results

Documentation:

Reference manual: GPTCM.html , GPTCM.pdf
Vignettes: Introduction (source, R code)

Downloads:

Package source: GPTCM_1.1.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): GPTCM_1.1.1.tgz, r-oldrel (x86_64): GPTCM_1.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GPTCM to link to this page.