## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(tidyverse) library(phyloseq) ## ----------------------------------------------------------------------------- #this file has duplicate rows, and has multiple rows per pool samples <- read.csv("https://figshare.com/ndownloader/files/33076496") %>% distinct() %>% select(-Pool, -Run, -ShotgunBatchID) %>% distinct() samples <- samples[1:100,] # Using the first 100 samples only. counts <- read.csv("https://figshare.com/ndownloader/files/26393788") counts <- counts %>% filter(SampleID %in% samples$SampleID) taxonomy <- read.csv("https://figshare.com/ndownloader/files/26770997") phy <- phyloseq( sample_data(samples %>% column_to_rownames("SampleID")), tax_table(taxonomy %>% select(ASV, Kingdom:Genus) %>% column_to_rownames("ASV") %>% as.matrix()), otu_table(counts %>% pivot_wider(names_from = "SampleID", values_from = "Count", values_fill = 0) %>% column_to_rownames("ASV") %>% as.matrix(), taxa_are_rows = TRUE) ) %>% subset_samples(DayRelativeToNearestHCT > -30 & DayRelativeToNearestHCT < 0) %>% tax_glom("Genus") ## ----------------------------------------------------------------------------- dat <- FLORAL::phy_to_floral_data(phy, covariates=c("Consistency"), y = "DayRelativeToNearestHCT") ## ----------------------------------------------------------------------------- res <- FLORAL::FLORAL(y = dat$y, x = dat$xcount, ncov = dat$ncov, family = "gaussian", ncv=NULL, progress=FALSE)