## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(EstimateBreed) data("maize") #Extract heterosis and heterobeltiosis with(maize,het(GEN,GM,GP,PR,REP,param="all")) #Only extract heterosis with(maize,het(GEN,GM,GP,PR,REP,param = "het")) #Extract only heterobeltiosis with(maize,het(GEN,GM,GP,PR,REP,param = "hetb")) ## ----------------------------------------------------------------------------- library(EstimateBreed) data("aveia") # Calculate the industrial yield without extracting the average with(aveia, rend_ind(GEN,NG2M,MG,MC,RG)) # Calculate the industrial yield by extracting the average per genotype with(aveia, rend_ind(GEN,NG2M,MG,MC,RG,stat="mean")) ## ----------------------------------------------------------------------------- library(EstimateBreed) data("trigo") #Ear viability index with(trigo,indviab(TEST,NGE,NEE)) #Ear harvest index with(trigo,indviab(TEST,MGE,ME)) #Spikelet deposition index in the ear with(trigo,indviab(TEST,NEE,CE)) ## ----------------------------------------------------------------------------- library(EstimateBreed) GEN <- rep(paste("G", 1:5, sep=""), each = 3) REP <- rep(1:3, times = 5) MG <- c(78.5, 80.2, 79.1, 81.3, 82.0, 80.8, 76.9, 78.1, 77.5, 83.2, 84.1, 82.9, 77.4, 78.9, 79.3) data <- data.frame(GEN, REP, MG) with(data,hw(GEN,MG,crop="trit")) #Extract the average PH per genotype with(data,hw(GEN,MG,crop="trit",stat="mean")) ## ----------------------------------------------------------------------------- library(EstimateBreed) #Obtain environmental deviations data("desvamb") head(desvamb) #Use DPclim for the ISGR function to identify deviations correctly DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC)) #Calculate the ISGR data("genot") head(genot) isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO)) #Define the water requirement per stage isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO,req=5,stage="rep")) ## ----------------------------------------------------------------------------- library(EstimateBreed) TEST <- rep(paste("T", 1:5, sep=""), each=3) REP <- rep(1:3, times=5) Xi <- rnorm(15, mean=10, sd=2) data <- data.frame(TEST,REP,Xi) #Apply the witness variability constraint Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = FALSE)) #Apply witness variability restriction with normalization (Z statistic) Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = TRUE)) ## ----------------------------------------------------------------------------- library(EstimateBreed) var <- c("A","B","C","D","E") VF <- c(2.5, 3.0, 2.8, 3.2, 2.7) VG <- c(1.2, 1.5, 1.3, 1.6, 1.4) data <- data.frame(var,VG,VF) #Calculating for just one generation with(data,COI(var,VG,VF,generation = "F3")) ## ----------------------------------------------------------------------------- library(EstimateBreed) data("genot2") #Geting parameters without cheking model assumptions parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2")) parameters$anova parameters$gp #Checking model assumptions parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2"),check=TRUE) parameters$anova parameters$gp