## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(dplyr) library(magrittr) library(DTSEA) ## ----------------------------------------------------------------------------- # Load the data data("example_disease_list", package = "DTSEA") data("example_drug_target_list", package = "DTSEA") data("example_ppi", package = "DTSEA") # Perform a simple DTSEA analysis using default optional parameters then sort # the result dataframe by normalized enrichment scores (NES) result <- DTSEA(network = example_ppi, disease = example_disease_list, drugs = example_drug_target_list, verbose = FALSE ) %>% arrange(desc(NES)) head(result) ## ----------------------------------------------------------------------------- select(result, -leadingEdge) %>% arrange(desc(NES)) %>% filter(NES > 0 & pval < .05) %>% head() ## ----------------------------------------------------------------------------- fgsea::plotEnrichment( pathway = example_drug_target_list %>% filter(drug_id == slice(result, 1)$drug_id) %>% pull(gene_target), stats = random.walk(network = example_ppi, p0 = calculate_p0(nodes = example_ppi, disease = example_disease_list) ) ) ## ----------------------------------------------------------------------------- # Calculate p0 p0 <- calculate_p0(nodes = example_ppi, disease = example_disease_list) # Then perform random walk random.walk(network = example_ppi, p0 = p0, verbose = FALSE) %>% head() ## ----echo = FALSE------------------------------------------------------------- # Imagine there are three prediction results with ten samples x <- runif(10, min = 0, max = 5) y <- runif(10, min = 0, max = 5) z <- sqrt(x + y) + runif(10, min = -1, max = 1) data <- data.frame(x, y, z) ## ----------------------------------------------------------------------------- # Just report the results kendall.w(data)$report # Or just report the alpha cronbach.alpha(data) ## ---- eval=FALSE-------------------------------------------------------------- # # Load the data # data("example_disease_list", package = "DTSEA") # data("example_drug_target_list", package = "DTSEA") # data("example_ppi", package = "DTSEA") # # # set up environment # # single.core <- function() { # suppressWarnings(capture.output(DTSEA(network = example_ppi, # disease = example_disease_list, # drugs = example_drug_target_list, # nproc = 0))) # NULL # } # # dual.core <- function() { # suppressWarnings(capture.output(DTSEA(network = example_ppi, # disease = example_disease_list, # drugs = example_drug_target_list, # nproc = 10))) # NULL # } # # system.time(single.core()) - system.time(dual.core()) # ## ---- eval=FALSE-------------------------------------------------------------- # if (!"devtools" %in% as.data.frame(installed.packages())$Package) # install.packages("devtools") # devtools::install_github("hanjunwei-lab/DTSEAdata")