Package 'CombinS'

October 12, 2022

Type Package

Title Construction Methods of some Series of PBIB Designs

Version 1.1-1

Date 2016-11-22

Author Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

Maintainer Mohamed Laib < laib.med@gmail.com>

Description Series of partially balanced incomplete block designs (PBIB) based on the combinatory method (S) introduced in (Imane Rezgui et al, 2014) <doi:10.3844/jmssp.2014.45.48>; and it gives their associated U-type design.

Imports stats, utils

URL 'www.sites.google.com/site/mohamedlaibwebpage'

License GPL-3

Encoding UTF-8

LazyData true

Note This version is a generalisation for (v=wnl) treatments. In the version 1.0 we used rectangular right angular (m) association schemes with (v=2nl) and m=4,5 and 7 associated classes. The Association schemes used in this R-package are: Rectangular association scheme; Generalized rectangular right angular association scheme (4); Generalized rectangular right angular association scheme (5); Generalized rectangular right angular association scheme (7).

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-11-23 14:09:37

2 CombS

R topics documented:

CombS .		•	•												•								2
GPBIB4A																							3
GPBIB4B																							4
GPBIB5 .																							(
GPBIB7A																							8
GPBIB7B																							9
UType																						1	. 1
																						1	10
																						•	

CombS

Index

The Combinatory Method (s) for the construction of rectangular PBIB designs

Description

The application of the Combinatory Method (s), with s chosen in [2, l-1], on rectangular association scheme to obtain the configuration and the parameters of the PBIB design associated.

Usage

```
CombS(n, 1, s)
```

Arguments

- n Number of lines of the association schemes array.
- Number of columns of the association schemes array.
- s Number of the token treatments from the same row of the association scheme.

Details

- For 2 < s < l, we obtain a rectangular PBIB design.
- For s=l, we obtain a singular group divisible designs.

Value

A LIST:

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable?

GPBIB4A 3

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi (2014). New construction method of rectangular partially balanced incomplete block designs and singular group divisible designs, Journal of Mathematics and Statistics, 10, 45-48.

M.N. Vartak 1955. On an application of Kronecker product of Matrices to Statistical designs. Ann. Math. Stat., 26(420-438).

See Also

```
UType
```

Examples

```
## Not run:
n<-3
1<-3
s<-2
CombS(1,n,s)
## End(Not run)</pre>
```

GPBIB4A

Generalized rectangular right angular (4) design with $\lambda_4 = 0$

Description

Gives the configuration and the parametres of the design obtained by the first construction method of GPBIB_4 (see 3.1.1 of the paper rezgui et al (2015)).

Usage

```
GPBIB4A(n, 1, s, w)
```

Arguments

- n Number of lines of the association schemes array.
- Number of columns of the association schemes array.
- s Number of the token treatments from the same row of the association scheme.
- w Number of the association scheme arrays.

Details

• For s = l, the previous method gives configuration of nested group divisible designs.

4 GPBIB4A

Value

A LIST:

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- · K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable?

Note

```
For w=2, the GPBIB_4 is a rectangular right angular (4) (PBIB_4)
```

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

```
GPBIB4B and UType
```

```
## Not run:
n<-3
1<-3
s<-3
w<-3
GPBIB4A(n, 1, s, w)
## End(Not run)</pre>
```

GPBIB4B 5

GPBIB4B	Generalized rectangular right angular (4) design with λ_4 not equal to 0

Description

Gives the configuration and the parametres of the design obtained by the seconde construction method of GPBIB_4 (see 3.1.2 of the paper rezgui et al (2015)).

Usage

```
GPBIB4B(n, 1, s, w)
```

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.

w Number of the association scheme arrays.

Value

A LIST:

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable?

Note

```
For w=2, the GPBIB_4 is a rectangular right angular (4) (PBIB_4)
```

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

6 GPBIB5

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

```
GPBIB4A and UType
```

Examples

```
## Not run:
n<-3
1<-3
s<-3
w<-3
GPBIB4B(n, 1, s, w)
## End(Not run)</pre>
```

GPBIB5

Generalized rectangular right angular (5) design.

Description

gives the configuration and the parametres of the design obtained by the construction method of GPBIB_5 (see 3.2 of the paper rezgui et al (2015)).

Usage

```
GPBIB5(n, 1, s, w)
```

Arguments

- n Number of lines of the association schemes array.
- Number of columns of the association schemes array.
- s Number of the token treatments from the same row of the association scheme.
- w Number of the association scheme arrays.

GPBIB5

Value

A LIST:

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- · K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Note

For w = 2, the GPBIB_5 is a rectangular right angular (5) (PBIB_5).

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

UType

```
## Not run:
n<-3
1<-3
s<-3
w<-3
GPBIB5(n, l, s, w)
## End(Not run)</pre>
```

8 GPBIB7A

GPBIB7A	Generalized rectangular right angular (7) design with λ_i equal to
	$\lambda_{i} + 4 \ (i = 1,, 4)$

Description

gives the configuration and the parametres of the design obtained by the first construction method of GPBIB_7 (see 3.3.1 of the paper rezgui et al (2015))

Usage

```
GPBIB7A(n, l, s, w)
```

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.
W	Number of the association scheme arrays.

Value

A LIST:

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lambda Vector of m-lambda.
- Resolvable Is the design Resolvable?

Note

For w=2, the GPBIB_7 is a rectangular right angular (7) (PBIB_7).

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

GPBIB7B

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

```
GPBIB7B and UType
```

Examples

```
## Not run:
n<-3
1<-3
s<-3
w<-3
GPBIB7A(n, 1, s, w)
## End(Not run)</pre>
```

GPBIB7B

Generalized rectangular right angular (7) design with distinct λ_i (i=1,...,7)

Description

Gives the configuration and the parametres of the design obtained by the seconde construction method of GPBIB_7 (see 3.3.2 of the paper rezgui et al (2015)).

Usage

```
GPBIB7B(n, 1, s, w)
```

Arguments

- n Number of lines of the association schemes array.
- 1 Number of columns of the association schemes array.
- s Number of the token treatments from the same row of the association scheme.
- w Number of the association scheme arrays.

10 GPBIB7B

Value

A LIST:

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- · K Size of blocs.
- lambda Vector of m-lambda.
- Resolvable Is the design Resolvable?

Note

```
For w=2, the GPBIB_7 is a rectangular right angular (7) (PBIB_7).
```

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

```
GPBIB7A and UType
```

```
## Not run:
n<-3
1<-3
s<-3
w<-3
GPBIB7B(n, 1, s, w)
## End(Not run)</pre>
```

UType 11

UType

U-type design via some PBIB designs

Description

Applies the Fang algorithm on our constructed designs to obtain the configuration and the parameters of the U-type design associated.

Usage

```
UType(1st)
```

Arguments

lst

The output of one of our package functions.

Value

A LIST:

- v Number of runs.
- r Number of factors.
- UtypeDesign The configuration of the U-type design..

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

K.T. Fang, R.Li and A.Sudjanto (2006). Design ans Modeling for Computer Experiments. Taylor & Francis Group, LLC London.

```
## Not run:
M<-GPBIB4A(4,4,2,2)
UType(M)
## End(Not run)</pre>
```

Index

```
CombS, 2

GPBIB4A, 3, 6

GPBIB4B, 4, 5

GPBIB5, 6

GPBIB7A, 8, 10

GPBIB7B, 9, 9

UType, 3, 4, 6, 7, 9, 10, 11
```