CRE 0.2.5 (2024-4-21)
Added
- A copy of inTrees package source code.
 
Removed
- The inTrees package dependency
 
CRE 0.2.5 (2023-12-6)
Added
- Add (vanilla) Stability Selection (without Error Control).
 
max_rules hyper parameters for max rules
filtering. 
- Uncertainty Quantification in estimation by bootstrapping.
 
B hyper-parameter, 
subsample hyper-parameter. 
rules(implicit form) in cre() function return. 
- predict() function for ITE estimation via CRE.
 
Changed
- Type 
stability_selection binary -> string
(‘no’,‘vanilla’,‘error_control’). 
- Unify 
ntrees_gbm hyper-parameter and
ntrees_gbm hyper-parameter in ntrees
hyper-parameter. 
- In rules generation retrieve decision rules also from internal
nodes, and not just from terminal nodes.
 
ite_method_dis, ite_method_inf
method-parameter -> ite_method. 
ps_method_dis, ps_method_inf
method-parameter -> learner_ps. 
oreg_method_dis, oreg_method_inf
method-parameter -> learner_y. 
Removed
max_nodes hyper-parameter. 
- Remove rules generation by Generalized Boosted Regression.
 
replace hyper-parameter. 
penalty_rl hyper-parameter. 
t_pvalue hyper-parameter. 
ite_pred from cre() function return. 
Bug fixes
- Error saving covariates name in CRE result when using
intervention_vars. 
CRE 0.2.4 (2023-6-14)
Changed
- Method paper description is updated.
 
CRE 0.2.3 (2023-4-27)
Removed
- Bayesian Causal Forest (
bcf) ITE estimator is not
supported. 
CRE 0.2.2 (2023-4-17)
Changed
- Fixed failing unit tests on specific operating systems.
 
CRE 0.2.1 (2023-3-17)
Changed
- Replace BATE with ATE in CATE Linear Decomposition.
 
- Update 
plot() function (remove ATE, old BATE, and
explicit AATEs). 
Added
Removed
- Causal Tree benchmark in functional tests.
 
Bug fixes
- Rank-Deficient Rule Matrix Issue (redundant rules).
 
- Intervention Variables Filtering (ordered filtering).
 
CRE 0.2.0 (2023-1-19)
Changed
offset method-parameter -> hyper-parameter 
estimate_ite_poisson function ->
estimate_ite_tpoisson 
max_dacay hyper-parameter ->
t_decay. 
interpret_select_rules function ->
interpret_rules. 
generate_causal_rules function ->
discover_rules. 
discover_causal_rules function
->select_rules. 
offset_name method parameter ->
offset. 
- Hyper and method parameters are no more required arguments for
cre. 
cre object: added parameters and ite estimation. 
Added
- Synthetic data set with 1 or 3 rules
(
generate_cre_dataset). 
- S-Learner (
slearner) method for ITE estimation. 
- T-Learner (
tlearner) method for ITE estimation. 
- X-Learner (
xlearner) method for ITE estimation. 
- Rules Selection description in 
summary.cre. 
verbose parameter in summary.cre. 
ite, additional cre input parameter to use
personalized ite estimations. 
- Default values for hyper parameters.
 
- Default values for method parameters.
 
- Simulation experiments for estimation
(
estimation.R). 
- Simulation experiments for discovery
(
discovery.R). 
extract_effect_modifiers function (utility for
performance evaluation). 
evaluate function for discovery evaluation. 
confounding parameter in
generate_cre_dataset to set confounding type. 
ite_pred and model in CRE results. 
binary_covariates parameter in
generate_cre_dataset to set covariates domain. 
Removed
include_ps_inf method-parameter. 
include_ps_dis method-parameter. 
oreg method for ITE estimation. 
ipw method for ITE estimation. 
sipw method for ITE estimation. 
- ITE standard deviation estimation.
 
type_decay hyper-parameter. 
- Keep only 
linreg for CATE estimation (remove
cate_method and cate_SL_library
parameters). 
method_params and hyper_params additional
parameters in summary.cre. 
- ite standardization for Rules Generation.
 
random_state parameter. 
include_offset method parameter. 
Bug fixes
- Rules Generation Issue (set rules length and fix
bootstrapping).
 
CRE 0.1.1 (2022-10-18)
Changed
binary parameter in generate_cre_dataset
-> binary_outcome . 
filter_cate hyper-parameter ->
t_pvalue. 
t_anom hyper-parameter -> t_ext. 
effect_modifier hyper-parameter ->
intervention_vars. 
lasso_rules_filter function ->
discover_causal_rules. 
split_data function ->
honest_splitting. 
prune_rules function ->
`filter_irrelevant_rules. 
discard_correlated_rules function ->
filter_correlated_rules. 
discard_anomalous_rules function ->
filter_extreme_rules. 
Added
- Weighted LASSO for Causal Rules Discovery (by
penalty_rl hyper-parameter). 
CRE 0.1.0 (2022-10-17)
Changed
- Update examples and tests for all functions.
 
q hyper-parameter -> cutoff. 
pfer_val hyper-parameter -> pfer. 
select_causal_rules function ->
lasso_rules_filter. 
t hyper-parameter -> t_anom. 
- Separate standardization, and remove filtering from
generate_rules_matrix function. 
summary.cre function to describe results. 
min_nodes hyper-parameter -> node_size
(randomForest convention). 
cre returns an S3 object. 
Added
- Examples and tests for all functions.
 
prune_rules function to discard un-predictive
rules. 
discard_anomalous_rules function to discard anomalous
rules (see t_corr hyper-parameter.). 
discard_correlated_rules function to discard correlated
rules (see t_anom hyper-parameter). 
effect_modifiers parameter in
generate_rules function for covariates filtering. 
generate_causal_rules function. 
- Helper function with 
SuperLearner package for
propensity score estimation in estimate_ite_xyz. 
- Five methods for CATE estimation (
poisson,
DRLearner, bart-baggr, cf-means,
linreg) in estimate_cate function. 
- (
ps_method_dis, ps_method_inf,
or_method_dis, or_method_inf,
cate_SL_library) method-parameters to complement
SuperLearner package. 
cate_method method-parameter to select CATE estimation
method. 
filter_cate method-parameter for estimation
filtering. 
p parameter (in generate_cre_dataset
function) to set the number of covariates. 
replace parameter (in generate_rules
function) to allow bootstrapping. 
cre.print generic function to print cre S3
object results. 
cre.summary generic functions to summarize
cre S3 object Results. 
check_input function to isolate input checks. 
estimate_ite_aipw function for augmented inverse
propensity weighting. 
plot.cre generic function to plot cre S3
object results. 
test-cre_functional.R to test the functionality of the
package. 
stability_selection function for causal rules
selection. 
Removed
estimate_ite_blp function. 
take1() function. 
Bug fixes
- Undesired ‘All’ Decision Rule Issue.
 
- No Causal Rule Selected Issue.
 
CRE 0.0.1 (2021-10-20)
Changed
estimate_cate include two methods for estimating the
CATE values. 
cre added initial checks for binary outcome and whether
to include the propensity score in the ITE estimation. 
estimate_ite_xyz conduct propensity score estimation
using helper function. 
Added
- Example for 
generate_cre_dataset. 
set_logger and get_logger. 
check_input_data function. 
generate_cre_dataset function to generate synthetic
data for testing the package. 
test-generate_cre_dataset function test. 
estimate_ps function to estimate the propensity
score. 
estimate_ite_xbart function to generate ITE estimates
using accelerated BART. 
estimate_ite_xbcf function to generate ITE estimates
using accelerated BCF. 
analyze_sensitivity function to conduct sensitivity
analysis for unmeasured confounding. 
cre function to perform the entire Causal Rule Ensemble
method. 
estimate_cate function to generate CATE estimates from
the ITE estimates and select rules. 
estimate_ite function to generate ITE estimates using
the user-specified method (calls the other estimate_ite_xyz
functions). 
estimate_ite_bart function to generate ITE estimates
using BART. 
estimate_ite_bcf function to generate ITE estimates
using Bayesian Causal Forests. 
estimate_ite_cf function to generate ITE estimates
using Causal Forests. 
estimate_ite_ipw function to generate ITE estimates
using IPW. 
estimate_ite_or function to generate ITE estimates
using Outcome Regression. 
estimate_ite_sipw function to generate ITE estimates
using SIPW. 
extract_rules function to extract a list of causal
rules from randomForest and GBM models. 
generate_rules function to generate causal rule models
using randomForest and GBM methods. 
generate_rules_matrix function to convert a list of
causal rules into a matrix. 
select_causal_rules function to apply penalized
regression to causal rules. to select only the most important ones. 
split_data function to split input data into discovery
and inference subsamples. 
take1 function to create a subsample of indices. 
Removed
seed argument in generate_cre_datase
function.