Package ‘COCONUT’

October 12, 2022
Type Package
Title COmbat CO-Normalization Using conTrols (COCONUT)
Version 1.0.2
Date 2017-09-18
Author Timothy E Sweeney, MD, PhD [aut,cre]
Maintainer Timothy E Sweeney <tes17@alumni.stanford.edu>
Depends stats

Suggests limma, parallel

Enhances

Description Allows for pooled analysis of microarray data by batch-
correcting control samples, and then applying the derived correction parameters to non-
control samples to obtain bias-free, inter-dataset corrected data.

License GPL-3

LazyData TRUE

NeedsCompilation no

RoxygenNote 6.0.1

Repository CRAN

Date/Publication 2017-09-19 07:55:13 UTC

R topics documented:

COCONUT-package o i i e e e e e e e e e
COCONUT e e
combineCOCOOULPUL o vt et s e e e e
GSEs.testo e

Index

2 COCONUT-package

COCONUT-package COmbat CO-Normalization Using conTrols: COmbat CO-
Normalization Using conTrols (COCONUT)

Description

Allows for pooled analysis of microarray data by batch-correcting control samples, and then ap-
plying the derived correction parameters to non-control samples to obtain bias-free, inter-dataset
corrected data.

Details
The DESCRIPTION file:
Package: COCONUT
Type: Package
Title: COmbat CO-Normalization Using conTrols (COCONUT)
Version: 1.0.2
Date: 2017-09-18
Author: Timothy E Sweeney, MD, PhD [aut,cre]
Maintainer: Timothy E Sweeney <tes17 @alumni.stanford.edu>
Depends: stats
Suggests: limma, parallel
Enhances:
Description: Allows for pooled analysis of microarray data by batch-correcting control samples, and then applying tt
License: GPL-3
LazyData: TRUE
NeedsCompilation: no
RoxygenNote: 6.0.1
Packaged: 2017-09-18 23:03:57 UTC; timsweeney
Index of help topics:
COCONUT COmbat CO-Normalization Using conTrols: COCONUT
COCONUT-package COmbat CO-Normalization Using conTrols: COmbat
CO-Normalization Using conTrols (COCONUT)
GSEs. test COCONUT test data
combineCOCOoutput Combine COCONUT output from multiple objects

into a single object

Direct comparison of different microarray cohorts is impossible due both to inherent differences
in underlying microarray platform and processing (technical) batch effects. In order to make use
of these data, we need to co-normalize cohorts in such a way that (1) no bias is introduced (i.e.,
the normalization protocol should be blind to disease state); (2) there should be no change to the
distribution of a gene within a study, and (3) a gene should show the same distributions between
studies after normalization.

COCONUT 3

We thus developed a modified version of the ComBat empiric Bayes normalization method (John-
son et al., Biostatistics 2007) to co-normalize control samples from different cohorts to allow for
direct comparison of diseased samples from those same cohorts. We call this method COmbat CO-
Normalization Using conTrols, or ’COCONUT’ . COCONUT makes one strong assumption, which
is that it forces controls/healthy patients from different cohorts to represent the same distribution.

Briefly, all cohorts are split into the control and diseased components. The control components
undergo ComBat co-normalization without covariates. The ComBat estimated parameters are ob-
tained for each dataset for the control component, and then applied onto the diseased component.
This forces the diseased components of all cohorts to be from the same background distribution,
but retain their relative distance from the control component . Importantly, it also does not require
any a priori knowledge of what type of disease is present in the diseased portion of the data. This
method does have the notable requirement that controls/healthy patients are required to be present
in a dataset in order for it to be pooled with other available data. Also, since control/healthy patients
are set to be in the same distribution, it should only be used where such an assumption is reasonable
(i.e., within the same tissue type, among the same species, etc.).

COCONUT requires a list of objects with two components, $gene and $pheno. It is assumed that
each item in the list represents a different study, and that these have already been internally batch-
corrected and normalized as appropriate. It is assumed that data object structure $gene is a matrix
(genes in rows, samples in columns) and that $pheno is a data.frame (samples in rows, variables
in columns). Note that COCONUT (like ComBat) requires identical rownames (genes) across all
batches; so probes data will not work unless all matrices are from the same manufacturer (common
probe names).

Also note that, unlike sva::ComBat, no co-variates are allowed.

Author(s)

Timothy E Sweeney, MD, PhD [aut,cre]

Maintainer: Timothy E Sweeney <tes17 @alumni.stanford.edu>

References

Sweeney TE et al., "Robust classification of bacterial and viral infections via integrated host gene
expression diagnostics”, Science Translational Medicine, 2016

COCONUT COmbat CO-Normalization Using conTrols: COCONUT

Description

COCONUT is a modified version of the ComBat empiric Bayes batch correction method (John-
son et al., Biostatistics 2007). It allows for batch correction of microarray datasets using control
samples, which allows for diseased samples to be compared in pooled analysis. It makes a strong
assumption that all controls come from the same distribution.

Usage

COCONUT

COCONUT (GSEs, control.@.col, disease.col=NULL, byPlatform = FALSE, platformCol,
par.prior=TRUE, itConv=1e-04, parallel=FALSE, mc.cores=1)

Arguments

GSEs

control.9.col

disease.col

byPlatform

platformCol

par.prior

itConv

parallel

mc.cores

Details

A list of data objects. See details below.

The column name in the $pheno data.frames (in GSEs) that notes which samples
are controls. These samples MUST be marked with a 0 (zero).

Optional; if passed, refers to a column name in the $pheno data.frames (in GSEs)
from which disease samples are returned. Only checks to remove missing (NA)
samples from disease.col. Useful if there is a class of samples that need to be
removed from the analysis (i.e., samples that are not controls but also not the
disease of interest). If NOT supplied, COCONUT assumes all non-0 rows in
control.0.col are diseased.

Natively, byPlatform=F. If T, will group datasets by the batches found in plat-
formCol.

If byPlatform=T, platformCol is the name of a column in $pheno data.frames
(in GSEs) that indicates platform type. For instance, in the data example, each
$pheno has a $platform_id which contains that dataset’s GPL ID. Note: the
microarray ID type supplied should be constant within a column (but of course
can vary between datasets).

Whether to use parametric or non-parametric priors in empiric Bayes updates.
Defaults to parametric. Non-parametric can be quite time-consuming.

Allows user to change threshold for iterative solver. For advanced users only.

Parallel derivation of priors. Uses parallel:mclapply, and so will not work on
Windows machines (sorry).

If parallel=T, mc.cores should be set to the desired number of cores. Defaults to
1, so unless this is changed, functionality will be serial.

GSEs: A list of (named) data objects. Each data object must have two components, $pheno (a
data.frame of phenotype information with samples in rows and phenotype variables in columns),
and $genes (a matrix of genes in rows and samples in columns). Further, the rownames of $pheno
should match the colnames of $genes within each dataset. See the example data object for details.

byPlatform: Natively, COCONUT will assume each dataset in GSEs is a batch. However, there
is enough similarity between microarrays (if the same normalization protocols are used) that each
TYPE of microarray can be considered a batch. The advantage to this process is that datasets that
share platforms can pool control samples, meaning datasets without controls can be potentially
brought into the pool. The drawback is that there is still a substantial batch effect among datasets
that used the same microarray type but were processed separately. Quantile normalization is used
to overcome this to some degree, but it cannot be fixed altogether.

COCONUT

Value

COCONUT returns a list of lists. In the main list:

COCONUTList

rawDiseaselist

controllList

COCONUTList is itself a list, with the same names as the datasets in the input
objects. Only diseased (or non-control) samples are passed back here (controls
are dealt with separately, as below). The post-COCONUT-conormalized values
are found in SCOCONUTLIist[GSEname]$genes. See example below for single-
line code to collapse these into a single matrix for pooled analysis.

rawDiseaseList is returned so that the user can make easy comparisons between
pre- and post-COCONUT-co-normalized disease data. This contains the same
data as the input object, except that all control samples have been removed.

controlList returns the ComBat-normalized controls in $GSEs, and the derived
empiric Bayes parameters in $bayesParams. It is generally assumed that these
will be useful mainly for proving what COCONUT has done, etc., and not for
downstream analyses. Note that this does NOT contain the non-co-normalized
control data. To compare distributions, for example, you will need the original
data object. See example below.

Warning : COCONUT makes the strong assumption that the control data are from the same distribu-
tion. This may not always be an appropriate assumption. Users are advised to think carefully about
how to apply COCONUT locally.

Author(s)

Timothy E Sweeney, MD, PhD (tes17 [at] stanford [dot] edu)

References

Sweeney TE et al.,

"Robust classification of bacterial and viral infections via integrated host gene

expression diagnostics”, Science Translational Medicine, 2016

See Also
COCONUT-package

Examples

data(GSEs. test)

apply COCONUT to a very small test case
(3 datasets with 10 patients and 2000 genes)
GSEs.COCONUT <- COCONUT(GSEs=GSEs. test,

control.@.col="Healthy@.Sepsis1”,
byPlatform=FALSE)

make gene matrices
COCONUTgenes <- Reduce(cbind, lapply(GSEs.COCONUT$COCONUTList, function(x) x$genes))
rawgenes <- Reduce(cbind, lapply(GSEs.COCONUT$rawDiseaselList, function(x) x$genes))

plot not run;

(uncomment for plot)

combineCOCOoutput

#i## plot pre- and post-normalized data
plot(x=1:ncol (COCONUTgenes), y=COCONUTgenes["ATP6V1B1", 1, ylim=c(0,6), pch=20, col=1)
points(x=1:ncol(rawgenes), y=rawgenes["ATP6VIB1",], ylim=c(0,6), pch=20, col=2)

compare distributions before and after COCONUT

classvec <- GSEs.test$GSE28750%pheno$Healthy@.Sepsisi

prior <- GSEs.test$GSE28750%genes

post <- cbind(GSEs.COCONUT$controllList$GSEs$GSE28750%genes,
GSEs.COCONUT$COCONUTList$GSE28750%genes)

prior.t.stats <- apply(prior, 1, function(geneRow){
geneByClass <- split(geneRow, classvec)
gene.test <- t.test(geneByClass[[1]], geneByClass[[2]])
gene.test$statistic

b

post.t.stats <- apply(post, 1, function(geneRow){
geneByClass <- split(geneRow, classvec)
gene.test <- t.test(geneByClass[[1]], geneByClass[[2]]1)
gene.test$statistic

»
summary(prior.t.stats-post.t.stats)

thus gene distributions are preserved within datasets, but normalized
between datasets

combineCOCOoutput Combine COCONUT output from multiple objects into a single object

Description

Combine COCONUT output from multiple objects into a single object. Makes pooled analysis of
COCONUT-co-normalized data easier.

Usage

combineCOCOoutput (COCONUT.out)

Arguments

COCONUT . out Output from a call to COCONUT().

Details

The output from COCONUT() can be a bit daunting, and the separate dataobjects remain separated
by input cohort, plus are separated into control and diseased components.

GSEs.test 7

Value

This function will knit all data together into a list with three parts:

gene contains a single matrix with all COCONUT-conormalized data (both control
and disease)

pheno contains a single data.frame with all phenotype info from the input samples, but
ONLY from those columns whose colnames are same across all cohorts
class.cntlo.dis1

a binary vector that contains control/disease assignment for all columns in $genes.

Author(s)

Timothy E Sweeney, MD, PhD (tes17 [at] stanford [dot] edu)

References

Sweeney TE et al., "Robust classification of bacterial and viral infections via integrated host gene
expression diagnostics", 2016

Examples

data(GSEs. test)

apply COCONUT to a very small test case

(3 datasets with 10 patients and 2000 genes)

GSEs.COCONUT <- COCONUT(GSEs=GSEs. test,
control.@.col="Healthy@.Sepsis1”,
byPlatform=FALSE)

combine output
GSEs.COCO. combined <- combineCOCOoutput (GSEs.COCONUT)
str(GSEs.COCO. combined)

GSEs. test COCONUT test data

Description

A list of lists, specifically, a list of three data objects (GSEs) from the NIH GEO repository. Each
has been converted from a probe matrix to a gene matrix, and subsetted to have only 10 samples (5
healthy and 5 diseased) with only 2000 genes.

Usage

data(GSEs. test)

8 GSEs.test

Format
A list of lists. Within the list, each named object consists of:

genes anumeric matrix, gene names in rows and sample IDs in columns.

pheno a data.frame, with sample IDs in rows and phenotype variables in columns.

Details

The data all come from the NIH GEO repository, and are subsets of their respective GSE IDs.

Source

http://www.ncbi.nlm.nih.gov/geo/

Examples

see help(COCONUT) for further example
data(GSEs. test)
str(GSEs. test)

Index

+ datasets
GSEs.test, 7

+ package
COCONUT-package, 2

COCONUT, 3
COCONUT-package, 2
combineCOCOoutput, 6

GSEs. test, 7

	COCONUT-package
	COCONUT
	combineCOCOoutput
	GSEs.test
	Index

