## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, cache = TRUE) test <- TRUE CACHE <- TRUE require(knitr) require(BIOMASS) ## ----eval=F------------------------------------------------------------------- # install.packages("BIOMASS") ## ----eval=F------------------------------------------------------------------- # require(BIOMASS) # require(knitr) # To build tables in this document ## ----cache=CACHE-------------------------------------------------------------- data(KarnatakaForest) str(KarnatakaForest) # data(NouraguesHD) str(NouraguesHD) ## ----cache=CACHE-------------------------------------------------------------- selecPlot <- KarnatakaForest$plotId %in% c("BSP2", "BSP12", "BSP14", "BSP26", "BSP28", "BSP30", "BSP34", "BSP44", "BSP63", "BSP65") KarnatakaForestsub <- droplevels(KarnatakaForest[selecPlot, ]) ## ----eval=test, cache=CACHE--------------------------------------------------- #uncomment the following line to check & retrieve taxonomy using correctTaxo function : #Taxo <- correctTaxo(genus = KarnatakaForestsub$genus, species = KarnatakaForestsub$species, useCache = FALSE, verbose = FALSE) #comment the following line loading the corrected version : data(Taxo) KarnatakaForestsub$genusCorr <- Taxo$genusCorrected KarnatakaForestsub$speciesCorr <- Taxo$speciesCorrected ## ----eval=test, cache=CACHE--------------------------------------------------- #uncomment the following line to retrieve APG III families and orders from genus names using getTaxonomy function : #APG <- getTaxonomy(KarnatakaForestsub$genusCorr, findOrder = TRUE) #comment the following line loading the corrected version : data(APG) KarnatakaForestsub$familyAPG <- APG$family KarnatakaForestsub$orderAPG <- APG$order ## ----eval=test, cache=CACHE--------------------------------------------------- dataWD <- getWoodDensity( genus = KarnatakaForestsub$genusCorr, species = KarnatakaForestsub$speciesCorr, stand = KarnatakaForestsub$plotId ) ## ----eval=test, cache=CACHE--------------------------------------------------- LocalWoodDensity <- data.frame( genus = c("Ziziphus", "Terminalia", "Garcinia"), species = c("oenopolia", "bellirica", "indica"), wd = c(0.65, 0.72, 0.65) ) dataWD <- getWoodDensity( genus = KarnatakaForestsub$genusCorr, species = KarnatakaForestsub$speciesCorr, family = KarnatakaForestsub$familyAPG, stand = KarnatakaForestsub$plotID, addWoodDensityData = LocalWoodDensity ) ## ----eval=test, cache=CACHE--------------------------------------------------- # At species level sum(dataWD$levelWD == "species") # At genus level sum(dataWD$levelWD == "genus") # At plot level sum(!dataWD$levelWD %in% c("genus", "species")) ## ----echo=TRUE, cache=CACHE--------------------------------------------------- result <- modelHD( D = NouraguesHD$D, H = NouraguesHD$H, useWeight = TRUE ) kable(result) ## ----cache=CACHE-------------------------------------------------------------- HDmodel <- modelHD( D = NouraguesHD$D, H = NouraguesHD$H, method = "log2", useWeight = TRUE ) ## ----cache=CACHE-------------------------------------------------------------- HDmodelPerPlot <- modelHD( D = NouraguesHD$D, H = NouraguesHD$H, method = "weibull", useWeight = TRUE, plot = NouraguesHD$plotId ) ResHD <- t(sapply(HDmodelPerPlot, function(x) c(coef(x$model), RSE = x$RSE))) kable(ResHD, row.names = TRUE, digits = 3) ## ----cache=CACHE-------------------------------------------------------------- dataHlocal <- retrieveH( D = KarnatakaForestsub$D, model = HDmodel ) ## ----cache=CACHE-------------------------------------------------------------- dataHfeld <- retrieveH( D = KarnatakaForestsub$D, region = "SEAsia" ) ## ----eval=F, cache=CACHE------------------------------------------------------ # dataHchave <- retrieveH( # D = KarnatakaForestsub$D, # coord = KarnatakaForestsub[, c("long", "lat")] # ) ## ----cache=CACHE-------------------------------------------------------------- KarnatakaForestsub$WD <- dataWD$meanWD KarnatakaForestsub$H <- dataHlocal$H KarnatakaForestsub$Hfeld <- dataHfeld$H ## ----warning=F, cache=CACHE--------------------------------------------------- AGBtree <- computeAGB( D = KarnatakaForestsub$D, WD = KarnatakaForestsub$WD, H = KarnatakaForestsub$H ) ## ----warning=F, cache=CACHE--------------------------------------------------- AGBplot <- summaryByPlot(AGBtree, KarnatakaForestsub$plotId) ## ----warning=F, eval=F, cache=CACHE------------------------------------------- # AGBplotChave <- summaryByPlot( # computeAGB( # D = KarnatakaForestsub$D, WD = KarnatakaForestsub$WD, # coord = KarnatakaForestsub[, c("long", "lat")] # ), # KarnatakaForestsub$plotId # ) ## ----warning=F, cache=CACHE--------------------------------------------------- AGBplotFeld <- summaryByPlot( computeAGB( D = KarnatakaForestsub$D, WD = KarnatakaForestsub$WD, H = KarnatakaForestsub$Hfeld ), plot = KarnatakaForestsub$plotId ) ## ----cache=CACHE-------------------------------------------------------------- KarnatakaForestsub$sdWD <- dataWD$sdWD KarnatakaForestsub$HfeldRSE <- dataHfeld$RSE ## ----cache=CACHE-------------------------------------------------------------- resultMC <- AGBmonteCarlo(D = KarnatakaForestsub$D, WD = KarnatakaForestsub$WD, errWD = KarnatakaForestsub$sdWD, HDmodel = HDmodel, Dpropag = "chave2004") Res <- summaryByPlot(resultMC$AGB_simu, KarnatakaForestsub$plotId) Res <- Res[order(Res$AGB), ] plot(Res$AGB, pch = 20, xlab = "Plots", ylab = "AGB", ylim = c(0, max(Res$Cred_97.5)), las = 1, cex.lab = 1.3) segments(seq(nrow(Res)), Res$Cred_2.5, seq(nrow(Res)), Res$Cred_97.5, col = "red") ## ----eval=F, cache=CACHE------------------------------------------------------ # resultMC <- AGBmonteCarlo( # D = KarnatakaForestsub$D, # WD = KarnatakaForestsub$WD, # errWD = KarnatakaForestsub$sdWD, # H = KarnatakaForestsub$Hfeld, # errH = KarnatakaForestsub$HfeldRSE, # Dpropag = "chave2004" # ) # # Res <- summaryByPlot(resultMC$AGB_simu, KarnatakaForestsub$plotId) # Res <- Res[order(Res$AGB), ] # plot(Res$AGB, pch = 20, xlab = "Plots", ylab = "AGB", ylim = c(0, max(Res$Cred_97.5)), las = 1, cex.lab = 1.3) # segments(seq(nrow(Res)), Res$Cred_2.5, seq(nrow(Res)), Res$Cred_97.5, col = "red") ## ----eval=F,cache=CACHE------------------------------------------------------- # resultMC <- AGBmonteCarlo( # D = KarnatakaForestsub$D, # WD = KarnatakaForestsub$WD, # errWD = KarnatakaForestsub$sdWD, # coord = KarnatakaForestsub[, c("long", "lat")], # Dpropag = "chave2004" # ) # Res <- summaryByPlot(resultMC$AGB_simu, KarnatakaForestsub$plotId) # Res <- Res[order(Res$AGB), ] # plot(Res$AGB, pch = 20, xlab = "Plots", ylab = "AGB", ylim = c(0, max(Res$Cred_97.5)), las = 1, cex.lab = 1.3) # segments(seq(nrow(Res)), Res$Cred_2.5, seq(nrow(Res)), Res$Cred_97.5, col = "red") ## ----cache=CACHE-------------------------------------------------------------- NouraguesHD$Hmix <- NouraguesHD$H NouraguesHD$RSEmix <- 0.5 filt <- is.na(NouraguesHD$Hmix) NouraguesHD$Hmix[filt] <- retrieveH(NouraguesHD$D, model = HDmodel)$H[filt] NouraguesHD$RSEmix[filt] <- HDmodel$RSE ## ----eval=F, cache=CACHE------------------------------------------------------ # wd <- getWoodDensity(NouraguesHD$genus, NouraguesHD$species) # resultMC <- AGBmonteCarlo( # D = NouraguesHD$D, WD = wd$meanWD, errWD = wd$sdWD, # H = NouraguesHD$Hmix, errH = NouraguesHD$RSEmix, # Dpropag = "chave2004" # ) # Res <- summaryByPlot(resultMC$AGB_simu, NouraguesHD$plotId) # Res <- Res[order(Res$AGB), ] # plot(Res$AGB, pch = 20, xlab = "Plots", ylab = "AGB (Mg/ha)", ylim = c(0, max(Res$Cred_97.5)), las = 1, cex.lab = 1.3) # segments(1:nrow(Res), Res$Cred_2.5, 1:nrow(Res), Res$Cred_97.5, col = "red")