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Introduction

The Hierarchical Modelling of Species Communities (HMSC) framework is a statistical framework for analysis
of multivariate data, typically from species communities. We assume that the reader has already gone through
the vignettes “Hmsc 3.0: Getting started with Hmsc: univariate models” and “Hmsc 3.0: Getting started
with Hmsc: low-dimensional multivariate models”. Here we continue with high-dimensional multivariate
models, i.e. models for species-rich communities consisting of many species.

The main difference between the low- and high-dimensional cases is that only the latter truly benefits from the
hierarchical structure of Hmsc. By the hierarchical structure we refer to the species responses to environmental
covariates being modelled jointly, and as a function of species traits and phylogenetic relationships. In this
context, each species can be considered as one data point. Thus, if there are only a handful of species, there
is insufficient data to accurately model the influence of traits and phylogenies. In contrast, if there are many
(say, several tens) of species, accounting for traits and phylogenies becomes meaningful.

To get Hmsc in use, you need to load it.

library(Hmsc)
library(parallel)
library(corrplot)
set.seed(1)

We also loaded the corrplot package which will be used for plotting, and we set the random number seed
with set.seed(1) to make the results presented here reproducible.

Generating simulated data for a large community

Simulating phylogeny and species traits

As an example, we will consider a community of 50 species. To bring an evolutionary perspective to our
analyses, we start by simulating a phylogeny describing how the species have evolved from their common
ancestor. We simulate a phylogeny with the rcoal function of the ape package.

ns = 50
phy = ape::rcoal(n=ns, tip.label = sprintf('species_%.3d',1:ns), br = "coalescent")
plot(phy, show.tip.label = FALSE, no.margin = TRUE)
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Figure 1: Simulated phylogeny of 50 species
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We will next generate simulated trait values for two traits for each of the 50 species. For the sake of illustration
we call these traits ‘habitat preference for forest’ (trait 1, to be abbreviated as H) and ‘thermal optimum’
(trait 2, to be abbreviated as T).

We assume that the traits are phylogenetically constrained so that they have evolved according to the
diffusion model of trait evolution. These assumptions can be implemented by randomizing the traits from a
multivariate normal distribution where the variance-covariance matrix is the phylogenetic correlation matrix
C. The phylogenetic correlation matrix C can be generated from the phylogenetic tree using the function
vcvof the ape package.

C = vcv(phy, model = "Brownian", corr = TRUE)
spnames = colnames(C)
traits = matrix(NA,ncol =2,nrow = ns)
for (i in 1:2){

traits[,i] = matrix(mvrnorm(n = 1, mu = rep(0,ns), Sigma=C))
}
rownames(traits) = spnames
colnames(traits) = c("habitat.use","thermal.optimum")
traits = as.data.frame(traits)

We next visualize the trait distributions by plotting them next to the phylogenetic tree.

par(fig = c(0,0.6,0,0.8), mar=c(6,0,2,0))
plot(phy, show.tip.label = FALSE)
par(fig = c(0.6,0.9,0.025,0.775), mar=c(6,0,2,0), new=T)
plot.new()
image.plot(t(traits),axes=FALSE,legend.width = 3,legend.shrink=1,

col = colorRampPalette(c("blue","white","red"))(200))
text(x=1.1, y=0.72, srt = 90, "H", cex=0.9, pos = 4)
text(x=1.4, y=0.72, srt = 90, "T", cex=0.9, pos = 4)
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Figure 2: Phylogenetic patterns of species’ trait values

As expected, both traits exhibit a clear phylogenetic signal, i.e. related species have similar trait values.
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Simulating environmental and species data

Next, we simulate the environmental and species data. With respect to the environmental conditions, we
assume that there is variation in habitat type and in climatic conditions. Concerning habitat, we assume that
the sampling units are located either in open habitats or in forested habitats. Concerning climate, we assume
that the sampling units differ in their thermal conditions, which we characterize by a continuous covariate.

n = 200
habitat = factor(sample(x = c("forest","open"), size = n, replace=TRUE))
climate = rnorm(n)

The next step is to define the species niches, i.e. how the species abundances depend on the match between
their traits and the environmental conditions. Below, we assume that the trait ‘habitat use’ measures the
species’ preference for forests, so that for forest habitats we add this trait value to the linear predictor whereas
for open habitats we subtract it. We further add the term −(Ci −Tj)2/4 where Ci is the climatic condition at
location i and Tj is the thermal optimum of the species j. This makes the linear predictor and hence species
abundances the largest when the species thermal optimum matches with the climatic conditions. We can
write these choices as the equation E[Lij ] = HjFi −Hj(1 − Fi) − (Ci − Tj)2/4. Here E[Lij ] is the expected
value of the linear predictor, Hj is the habitat-use trait of the species j, Fi = 1 if location i is located in a
forest and Fi = 0 if it is located in an open area. To see how this equation is implemented below, we note
that E[Lij ] = [−T 2

j /4 −Hj ] + [2Hj ]Fi + [Tj/2]Ci + [−1/4]C2
i . Note that we have also added some random

noise to the species niches β so that they are not fully determined by the traits.

nc = 4
mu = matrix(0,nrow=nc,ncol=ns)
#expected niche of each species related to the "covariate" intercept
mu[1, ] = -traits$thermal.optimum^2/4-traits$habitat.use
#expected niche of each species related to the covariate forest
#(open area as reference level, so included in intercept)
mu[2, ] = 2*traits$habitat.use
#expected niche of each species related to the covariate climate
mu[3, ] = traits$thermal.optimum/2
#expected niche of each species related to the covariate climate*climate
mu[4, ] = -1/4
beta = mu + 0.25*matrix(rnorm(n = ns*nc), ncol=ns)
X = cbind(rep(1,ns), as.numeric(habitat=="forest"), climate, climate*climate)
L = X%*%beta

Finally, to generate the species data, we need to decide about the link function and error distribution. For
simplicity, we assume here that the data are normally distributed. We thus simply add some independent
residual variation, where we assume the variance parameter to be identical for each species. We note that as
the elements of the matrix Y can include any real numbers, they might measure species abundance e.g. in the
units of log-transformed biomass.
To make the species data interpretable with respect to the phylogenetic and trait information, we associate
the data matrix Y with the species names.

Y = L + mvrnorm(n=n, mu=rep(0,ns), Sigma=diag(ns))
colnames(Y) = spnames

HMSC analyses of the data with the “correct” model

We are now ready to analyse the data with HMSC. In this section, we consider the “correct” model for which
the assumptions are exactly in line with how we generated the data. Let us note in passing that with real
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data, the model will always be to some extent misspecified as the underlying mechanisms are not known. In
the next sections, we will examine the influence of model misspecification by examining how the results of
the analyses change if we e.g. fail to account for some of the traits or environmental covariates.

To define a HMSC model that best corresponds to how the data were simulated, we include as fixed effects
the categorical variable habitat type and the continuous covariate climate. To allow for the possibility of an
intermediate thermal optimum, we also include the squared effect of climate. As species traits, we include
habitat use (H) and thermal optimum (T). We also include the phylogenetic relationships among the species
to estimate the strength of the phylogenetic signal in the data. We thus construct the Hmsc model as

XData = data.frame(climate = climate, habitat = habitat)
XFormula = ~habitat + poly(climate,degree = 2,raw = TRUE)
TrFormula = ~habitat.use + thermal.optimum
studyDesign = data.frame(sample = sprintf('sample_%.3d',1:n), stringsAsFactors=TRUE)
rL = HmscRandomLevel(units = studyDesign$sample)
rL$nfMax = 15
m = Hmsc(Y = Y, XData = XData, XFormula = XFormula,

TrData = traits, TrFormula = TrFormula,
phyloTree = phy,
studyDesign = studyDesign, ranLevels = list(sample = rL))

In the above model, we included a random effect at the sampling unit level. In the data we simulated, we
assumed independent sampling units and no residual associations, and thus the absence of any random effect.
Thus, we expect that the random effect will play a minor role also in the fitted model.

We then choose the MCMC sampling parameters and fit the model. If the aim of the reader is to run through
the markdown behind the vignette fast to see how the model objects are constructed and how the functions
are called, we recommend running minimal amount of MCMC sampling, which can be obtained by setting
test.run = TRUE. If the aim is to replicate the results that are given in the pdf version of the vignette, the
user should increase the amount of MCMC sampling, e.g. by setting test.run = FALSE.

nChains = 2
test.run = FALSE
if (test.run){

#with this option, the vignette evaluates in ca. 10 minutes in a laptop
thin = 1
samples = 100
transient = 50

} else {
#with this option, the vignette evaluates in ca. 2 hrs in a laptop
thin = 10
samples = 1000
transient = 500

}
verbose = 0
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, nParallel = nChains, verbose = verbose)

## setting updater$Gamma2=FALSE due to specified phylogeny matrix

MCMC convergence

We evaluate MCMC convergence in terms of four kinds of parameters that we are especially interested in:
the species niches Beta, the influence of traits on species niches Gamma, residual species associations Omega,
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and the strength of phylogenetic signal rho. As there are 50 species, the matrix Omega is a 50 x 50 matrix
with 2500 elements. To avoid excessive computational times, we evaluate MCMC convergence for Omega only
for a subsample of 100 randomly selected species pairs.

mpost = convertToCodaObject(m)
par(mfrow=c(3,2))
ess.beta = effectiveSize(mpost$Beta)
psrf.beta = gelman.diag(mpost$Beta, multivariate=FALSE)$psrf
hist(ess.beta)
hist(psrf.beta)
ess.gamma = effectiveSize(mpost$Gamma)
psrf.gamma = gelman.diag(mpost$Gamma, multivariate=FALSE)$psrf
hist(ess.gamma)
hist(psrf.gamma)
sppairs = matrix(sample(x = 1:ns^2, size = 100))
tmp = mpost$Omega[[1]]
for (chain in 1:length(tmp)){

tmp[[chain]] = tmp[[chain]][,sppairs]
}
ess.omega = effectiveSize(tmp)
psrf.omega = gelman.diag(tmp, multivariate=FALSE)$psrf
hist(ess.omega)
hist(psrf.omega)

print("ess.rho:")

## [1] "ess.rho:"

effectiveSize(mpost$Rho)

## var1
## 1575.893

print("psrf.rho:")

## [1] "psrf.rho:"

gelman.diag(mpost$Rho)$psrf

## Point est. Upper C.I.
## [1,] 0.9990838 0.9991092

The convergence diagnostics suggest reasonably good MCMC convergence, as most potential scale reduction
factors are close to one and effective sample sizes relatively high. We note that this is largely thanks to the
assumption of a normal model, so that for e.g. probit model for presence-absence data we should most likely
run much longer MCMC chains.

Model fit and variance partitioning

With normally distributed data, we measure the explanatory power of the model by R2.

6



Histogram of ess.beta

ess.beta

F
re

qu
en

cy

2000 2500 3000

0
40

80
12

0

Histogram of psrf.beta

psrf.beta

F
re

qu
en

cy

1.00 1.02 1.04 1.06 1.08

0
50

15
0

25
0

Histogram of ess.gamma

ess.gamma

F
re

qu
en

cy

1500 1700 1900 2100

0
1

2
3

4
5

6

Histogram of psrf.gamma

psrf.gamma

F
re

qu
en

cy

0.995 1.005 1.015 1.025

0
2

4
6

8
10

Histogram of ess.omega

ess.omega

F
re

qu
en

cy

500 1000 1500 2000 2500

0
5

10
20

Histogram of psrf.omega

psrf.omega

F
re

qu
en

cy

1.00 1.02 1.04 1.06 1.08 1.10

0
20

60
10

0

Figure 3: Histograms of effective sample sizes and potential scale reduction factors (psrf) for Beta, Gamma,
and Omega parameters
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preds = computePredictedValues(m)
MF = evaluateModelFit(hM=m, predY=preds)
hist(MF$R2, xlim = c(0,1), main=paste0("Mean = ", round(mean(MF$R2),2)))

Mean = 0.55
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Figure 4: Histogram of species-specific explanatory r2 values

We observe that the explanatory power is relatively high for all species, which is not surprising, as we assumed
that the species respond strongly to variation in habitat and climatic conditions.

The explained variation can be partitioned into components related to the fixed and the random effects.
Before doing so, let us have a look at the design matrix X of the model.

head(m$X)

## (Intercept) habitatopen poly(climate, degree = 2, raw = TRUE)1
## 1 1 0 -1.15801525
## 2 1 0 -0.59274327
## 3 1 0 0.76606538
## 4 1 1 0.03892812
## 5 1 0 0.01464681
## 6 1 0 -0.18631697
## poly(climate, degree = 2, raw = TRUE)2
## 1 1.3409993286
## 2 0.3513445848
## 3 0.5868561726
## 4 0.0015153983
## 5 0.0002145291
## 6 0.0347140126

The design matrix X has been derived from XData and XFormula when constructing the HMSC object.
Following the usual conventions of building generalized linear models, the design matrix includes the intercept
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by default. The categorical explanatory variables are expanded into dummy variables indicating which level is
present in the focal sampling unit. Here the second column corresponds to the explanatory variable habitat,
and a value of 1 means that the habitat is open habitat. To avoid confounding with the intercept, one of the
levels is left as the reference level, which is why there is no column indicating when the habitat is forest (this
is the case when habitat is not in habitat). The continuous covariate climate is present here in two columns
modelling its linear and quadratic effects, respectively.

When performing a variance partitioning, the user can group the fixed effects (i.e., the columns of the design
matrix) in any way that works best for presenting the results. It is generally recommended to group variables
related to the same theme, as then the variance component accounts also for co-variation within the group,
whereas co-variation among groups is ignored in the way variance partitioning is computed in HMSC. Here
we wish to show separately the influences of habitat and climate. We call habitat group 1, and climate group
2. The column 2 of the design matrix belongs to group 1, so we define group[2]=1. The columns 3 and 4
of the design matrix belongs to group 2, so we define group[3]=2 and group[4]=2. The intercept does not
have any variation, and thus it will not contribute to the variance partitioning. Thus we may place it e.g. to
group 1 as group[1]=1.

VP = computeVariancePartitioning(m, group = c(1,1,2,2), groupnames = c("habitat","climate"))
plotVariancePartitioning(m, VP = VP)
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Random: sample (mean = 2.1)
climate (mean = 45.5)
habitat (mean = 52.4)
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Figure 5: Variance partitioning for each of 50 species

We observe that both components of environmental variation (climate and habitat) explain substantial
proportions of the explained variance. Which one of these is more important varies among the species. As
expected, the random effect explains next to nothing.
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Let us then ask how much the traits explain out of the variation among the species in their responses to
environmental covariates.

kable(VP$R2T$Beta)

x
(Intercept) 0.7911670
habitatopen 0.9774544
poly(climate, degree = 2, raw = TRUE)1 0.5980662
poly(climate, degree = 2, raw = TRUE)2 0.0237806

The traits explain a substantial proportion of the variation in the species niches. This is because we have
included in the HMSC model those traits that truly matter in how species respond to the environmental
variation. We next ask how the influence of traits on species niches propagates into the influence of traits on
species abundances.

VP$R2T$Y

## [1] 0.5818409

The traits explain a substantial proportion of variation also in species abundances.

Parameter estimates

As we have 50 species and four species-specific parameters (one for each column of the design matrix), there
are 200 β parameters in total. Thus it is more convenient to look at these as a figure rather than a vast table
of numbers. In the function plotBeta, we use the option plotTree = TRUE to plot the phylogenetic tree
next to the parameter estimates, thus ‘mapping’ the environmental responses onto the phylogeny.

postBeta = getPostEstimate(m, parName = "Beta")
plotBeta(m, post = postBeta, param = "Support",

plotTree = TRUE, supportLevel = 0.95, split=.4, spNamesNumbers = c(F,F))

## [1] 0.4 1.0 0.0 1.0

This figure contains a lot of information. First of all, there is strong posterior support for many parameters
being positive (red) or negative (blue), i.e. there are strong signals of environmental filtering. Some species
exhibit preference for open habitats (red colour in the second column C2), other exhibit avoidance of open
habitats and thus preference for forests (blue colour in the column C2). Species with preference for open and
forest habitats are not randomly distributed across the phylogeny, but sister species exhibit similar responses,
corresponding to our assumption that the species trait controlling for habitat preference is phylogenetically
constrained. Essentially all species exhibit negative responses to the second-order term of climate (column
C4), meaning that their estimated climatic niches have an intermediate optimum. A phylogenetic signal is
clear also in column C3 which shows the linear effect of the climatic niche and thus determines at which
temperature the species niche peaks.

While the Beta parameters model species niches, the Gamma parameters model how species traits influence
their niches. Let us next visualize these parameters.
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Figure 6: Heatmap of species’ environmental responses mapped onto the phylogeny
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postGamma = getPostEstimate(m, parName = "Gamma")
plotGamma(m, post=postGamma, param="Support", supportLevel = 0.95)
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Figure 7: Heatmap showing how species traits influence environmental responses

In this figure, the rows correspond to the species traits (more precisely, the columns of the design matrix Tr
that is derived from TrData and TrFormula), and the rows to the environmental covariates (more precisely,
the columns of the design matrix X illustrated above). This plot yields a compact summary of the results at
the community level. First, we observe a negative association between T2 (the trait habitat.use) and C2
(the level open of the environmental covariate habitat), meaning that those species which have a high value
of the trait ‘habitat use’ tend to be less common in open habitats than in the reference habitat (forest). This
makes perfect sense, as we assumed that habitat use influences the preference for forests. Second, we observe
a positive association between T4 (the trait thermal.optimum) and the covariate C3 (the linear effect of the
environmental covariate climate). This also makes perfect sense, as it means that species with a higher
thermal optimum are more abundant in sampling units with warmer climates. Third, we observe a negative
association between T1 (the trait intercept) and the covariate C4 (second order response to climate).
This corresponds to the result already observed in the Beta plot, that all species generally exhibit a negative
response to the second-order term of climate, and thus their response curve peaks at some intermediate
temperature.

Let us next visualize the estimated residual associations among the species.

OmegaCor = computeAssociations(m)
supportLevel = 0.95
toPlot = ((OmegaCor[[1]]$support>supportLevel)

+ (OmegaCor[[1]]$support<(1-supportLevel))>0)*OmegaCor[[1]]$mean
corrplot(toPlot, method = "color",

col=colorRampPalette(c("blue","white","red"))(200),
tl.cex=.6, tl.col="black",
title=paste("random effect level:", m$rLNames[1]), mar=c(0,0,1,0))
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Figure 8: Heatmap showing species residual associations
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The fact that there are no associations with high statistical support is in line with how we generated the data.

We finally look at the strength of the phylogenetic signal that was estimated from the data.

summary(mpost$Rho)

##
## Iterations = 510:10500
## Thinning interval = 10
## Number of chains = 2
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## 0.670060 0.094504 0.002113 0.002381
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## 0.4598 0.6100 0.6800 0.7400 0.8200

We note that the phylogenetic signal parameter ρ of Hmsc does not ask whether the species traits are
correlated with the phylogeny, a question that is often in the focus of phylogenetic comparative analyses.
Instead, the phylogenetic signal parameter ρ measures whether the species niches (i.e., their responses to the
environmental covariates, as measured by the β parameters) show phylogenetic correlations. Furthermore,
this is evaluated after accounting for the influence of species traits on species niches (as modelled by the γ
parameters). We do not see strong evidence for phylogenetic signal, as the 95%CI of ρ includes zero. This is
consistent with how we generated the data, because we propagated the influence of phylogeny solely through
those species traits that we included in the HMSC model.

Plotting variation over environmental gradients

The values of the primary parameters Beta and Gamma can sometimes be difficult to interpret, especially
if there are categorical traits or environmental covariates in which case their effects are coded through
dummy variables. One alternative for visualizing the results is to plot how the community changes over some
environmental gradient of interest. This can be done in HMSC by constructing environmental gradients with
the function constructGradient, then predicting communities over those gradients by the function predict,
and finally using plotGradientto visualize the predicted variation. We consider first a climatic gradient.

Gradient = constructGradient(m,focalVariable = "climate",
non.focalVariables = list("habitat"=list(3,"open")))

Gradient$XDataNew

## climate habitat
## 1 -2.87514168 open
## 2 -2.55190188 open
## 3 -2.22866208 open
## 4 -1.90542228 open
## 5 -1.58218248 open
## 6 -1.25894268 open
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## 7 -0.93570288 open
## 8 -0.61246308 open
## 9 -0.28922328 open
## 10 0.03401652 open
## 11 0.35725632 open
## 12 0.68049612 open
## 13 1.00373592 open
## 14 1.32697572 open
## 15 1.65021552 open
## 16 1.97345532 open
## 17 2.29669512 open
## 18 2.61993492 open
## 19 2.94317472 open
## 20 3.26641452 open

As climate is a continuous covariate, the constructed gradient involves a grid of its values ranging from the
smallest to the largest value observed in the data. As we will make predictions of species communities, we
need to assume values for all explanatory variables, not only to the focal one. We have set here the value of
the non-focal variable habitat to open habitat, and we thus imagine that we sample different parts of the
climatic gradient solely in open habitats. We then generate predictions for this community, and plot them
over the environmental gradient.

predY = predict(m, XData=Gradient$XDataNew, studyDesign=Gradient$studyDesignNew,
ranLevels=Gradient$rLNew, expected=TRUE)

plotGradient(m, Gradient, pred=predY, measure="S", showData = TRUE)
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Figure 9: Effect of climate on total abundance

## [1] 0

We set measure="S" to plot the summed abundance over all species, i.e. the row sum of the predicted
communities. The predicted response peaks at intermediate climate, a response that is also visible in the
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raw data. This is because, by our assumptions, some species are specialized to cold climates, some to warm
climates, and others to intermediate climates, leading to the pattern where intermediate climate is on average
the most suitable one. We note that with presence-absence data modelled with the probit model, the measure
S would give the expected species richness.

We can visualize the same predictions for individual species by setting measure="Y" and by using index to
select the species to be visualized (as ordered in the matrix m$Y).

plotGradient(m, Gradient, pred=predY, measure="Y", index = 1, showData = TRUE)
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Figure 10: Effect of climate on the abundance of species 1

## [1] 0

This figure shows that species_089 is most abundant under relatively cold climates. Finally, by selecting
measure="T" we can visualize how community-weighted mean trait values behave over the environmental
gradient. Now index selects the trait (as ordered in the matrix m$Tr).

plotGradient(m, Gradient, pred=predY, measure="T", index = 3, showData = TRUE)

## [1] 1

This figure shows that, as expected, the community-weighted mean of thermal optimum is higher under
warmer climates. For normally-distributed data, HMSC computes community-weighted mean traits by using
exponentially transformed predictions as weights, to avoid weighting with negative numbers.

Let us then construct an environmental gradient over the habitat types.

Gradient = constructGradient(m,focalVariable = "habitat",
non.focalVariables = list("climate"=list(1)))

Gradient$XDataNew
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Figure 11: Effect of climate on community-weighted mean thermal optimum

## habitat climate
## 1 forest -0.0208926
## 2 open -0.0208926

As habitat is a categorical variable, the gradient involves only two sampling units, one belonging to forest
and the other to open habitat. We have decided to normalize the climatic variable to its overall mean in the
data (for other options, see the F1-help for constructGradient).

Let us select the species for which the trait value for habitat use is the highest, and then plot how that species
responds to the habitat gradient.

predY = predict(m, XData=Gradient$XDataNew, studyDesign=Gradient$studyDesignNew,
ranLevels=Gradient$rLNew, expected=TRUE)

plotGradient(m, Gradient, pred=predY, measure="Y", index=which.max(m$TrData$habitat.use),
showData = TRUE, jigger = 0.2)

As expected, this species exhibits a stronger predicted response to forests than to open habitats, a pattern
visible also in the raw data. We note that because habitat is a categorical covariate, the environmental
gradient is now more naturally presented as a boxplot. We further note that we have set jigger = 0.2 to
randomly move the observed data (the dots) in the horizontal direction to avoid overlapping points.

We finally set measure="T" to examine how the community-weighted mean of the trait habitat use varies
between the two habitat types.

plotGradient(m, Gradient, pred=predY, measure="T", index=2, showData = TRUE, jigger = 0.2)

As expected, the average value of this trait (weighted by exponentially transformed species abundances) is
higher in forests than in open habitats.
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HMSC analyses of misspecified models

With real data, there is no “correct” model structure that would exactly correspond to the community-
assembly processes that generated the data. Thus, like any model, also the HMSC model will always be
“wrong”. We next briefly examine what happens if we misspecify the model by leaving out some environmental
covariates or traits.

Missing environmental covariate

We first repeat some of the above analyses with a missing environmental covariate. We assume that the
researcher would not have realized that the data are sampled from two different habitats, or that the researcher
did not consider it to matter for the species abundances. Thus, we fit otherwise the same model, but include
only climate as a fixed effect.

XFormula.1 = ~poly(climate, degree = 2, raw = TRUE)
ma50 = Hmsc(Y=Y, XData=XData, XFormula = XFormula.1,

TrData = traits, TrFormula = TrFormula,
phyloTree = phy,
studyDesign=studyDesign, ranLevels=list(sample=rL))

ma50 = sampleMcmc(ma50, thin = thin, samples = samples, transient = transient,
nChains = nChains, nParallel = nChains, verbose = verbose)

## setting updater$Gamma2=FALSE due to specified phylogeny matrix

VP = computeVariancePartitioning(ma50, group = c(1,1,1), groupnames=c("climate"))
plotVariancePartitioning(ma50, VP = VP)

Expectedly, the random effects now play a bigger role. Let us plot the structure of the species associations,
as estimated by the random effect.

OmegaCor = computeAssociations(ma50)
supportLevel = 0.95
toPlot = ((OmegaCor[[1]]$support>supportLevel)

+ (OmegaCor[[1]]$support<(1-supportLevel))>0)*OmegaCor[[1]]$mean
corrplot(toPlot, method = "color",

col=colorRampPalette(c("blue","white","red"))(200),
tl.cex=.6, tl.col="black",
title=paste("random effect level:", m$rLNames[1]), mar=c(0,0,1,0))

We now observe a much richer structure of associations. This is because the responses of the species to
habitat are not modelled through the fixed effects, and thus the random effect is capturing part of that
variation. Species pairs that prefer the same habitat type are now estimated to have a positive association,
whereas species pairs that prefer different habitat types are now estimated to have a negative association.

Missing traits

Let us next assume that we would have trait data only on habitat use, but we would lack information on
thermal optima. We repeat the above analyses with a model modified to correspond to this assumption.
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Figure 14: Variance partitioning for each of 50 species
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Figure 15: Heatmap showing species residual associations
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TrFormula.1 = ~habitat.use
m = Hmsc(Y=Y, XData=XData, XFormula = XFormula,

TrData = traits, TrFormula = TrFormula.1,
phyloTree = phy,
studyDesign=studyDesign, ranLevels=list(sample=rL))

m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,
nChains = nChains, nParallel = nChains, verbose = verbose)

## setting updater$Gamma2=FALSE due to specified phylogeny matrix

VP = computeVariancePartitioning(m, group = c(1,1,2,2), groupnames=c("habitat","climate"))
plotVariancePartitioning(m, VP = VP)
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Figure 16: Variance partitioning for each of 50 species

This model is very similar to the full model in terms of the variance partitioning. Let us then ask how much
the traits explain out of the variation among the species in their responses to environmental covariates.
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kable(VP$R2T$Beta)

x
(Intercept) 0.6989354
habitatopen 0.9796850
poly(climate, degree = 2, raw = TRUE)1 0.2047009
poly(climate, degree = 2, raw = TRUE)2 0.0068798

As expected, now the traits do not explain how species respond to climatic variation. Let us now ask how
much the traits explain out of their variation in species abundances.

VP$R2T$Y

## [1] 0.4785162

The traits now explain a smaller part of the variation in abundance than was the case for the full model.
This is because we are missing some relevant traits that would have explained the remaining part.

Finally, we examine the posterior distribution for the phylogenetic signal parameter.

mpost = convertToCodaObject(m)
summary(mpost$Rho)

##
## Iterations = 510:10500
## Thinning interval = 10
## Number of chains = 2
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## 0.719265 0.071856 0.001607 0.001699
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## 0.56 0.67 0.72 0.77 0.84

Now residual variation in species niches (not explained by the traits) include a phylogenetic signal. This is
generated by the phylogenetic structure of the missing trait of thermal optimum.

Changing prior distribution for the species loadings

The prior for the species loadings is the multiplicative gamma process shrinking prior that Bhattacharya and
Dunson (2011) proposed for modelling of high-dimensional covariance matrices. Of particular interest is the
a1 and a2 parameters of the prior, which controls the amount of shrinkage applied. The default values are
a = (50, 50). Increasing the value of the a1 parameter increases shrinkage in general, whereas increasing the
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value of the a2 parameter increasese how much additional shrinkage is applied to factor h+ 1 compared to
factor h.

To illustrate the consequences of this choice for the inference of residual species associations, we will refit
the model with a1 = a2 = 5 (less shrinkage), and a1 = a2 = 500 (more shrinkage). To do this, we use the
setPriors function.

XFormula.1 = ~poly(climate, degree = 2, raw = TRUE)
rL=setPriors(rL, a1=5, a2=5)
str(rL)

## List of 18
## $ pi : Factor w/ 200 levels "sample_001","sample_002",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ s : NULL
## $ sDim : num 0
## $ spatialMethod: NULL
## $ x : NULL
## $ xDim : num 0
## $ N : int 200
## $ distMat : NULL
## $ nfMax : num 15
## $ nfMin : num 2
## $ nNeighbours : NULL
## $ nu : num 3
## $ a1 : num 5
## $ b1 : num 1
## $ a2 : num 5
## $ b2 : num 1
## $ alphapw : NULL
## $ call : language HmscRandomLevel(units = studyDesign$sample)
## - attr(*, "class")= chr "HmscRandomLevel"

ma5 = Hmsc(Y=Y, XData=XData, XFormula = XFormula.1,
TrData = traits, TrFormula = TrFormula,
phyloTree = phy,
studyDesign=studyDesign, ranLevels=list(sample=rL))

ma5 = sampleMcmc(ma5, thin = thin, samples = samples, transient = transient,
nChains = nChains, nParallel = nChains, verbose = verbose)

## setting updater$Gamma2=FALSE due to specified phylogeny matrix

XFormula.1 = ~poly(climate, degree = 2, raw = TRUE)
rL = HmscRandomLevel(units = studyDesign$sample)
rL=setPriors(rL, a1=500, a2=500)
str(rL)

## List of 18
## $ pi : Factor w/ 200 levels "sample_001","sample_002",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ s : NULL
## $ sDim : num 0
## $ spatialMethod: NULL
## $ x : NULL
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## $ xDim : num 0
## $ N : int 200
## $ distMat : NULL
## $ nfMax : num Inf
## $ nfMin : num 2
## $ nNeighbours : NULL
## $ nu : num 3
## $ a1 : num 500
## $ b1 : num 1
## $ a2 : num 500
## $ b2 : num 1
## $ alphapw : NULL
## $ call : language HmscRandomLevel(units = studyDesign$sample)
## - attr(*, "class")= chr "HmscRandomLevel"

ma500 = Hmsc(Y=Y, XData=XData, XFormula = XFormula.1,
TrData = traits, TrFormula = TrFormula,
phyloTree = phy,
studyDesign=studyDesign, ranLevels=list(sample=rL))

ma500 = sampleMcmc(m, thin = thin, samples = samples, transient = transient,
nChains = nChains, nParallel = nChains, verbose = verbose)

## setting updater$Gamma2=FALSE due to specified phylogeny matrix

par(mfrow=c(1,3), mar=c(0,0,0,0))

OmegaCor = computeAssociations(ma5)
supportLevel = 0.95
toPlot = ((OmegaCor[[1]]$support>supportLevel)

+ (OmegaCor[[1]]$support<(1-supportLevel))>0)*OmegaCor[[1]]$mean
corrplot(toPlot, method = "color",

col=colorRampPalette(c("blue","white","red"))(200),
tl.cex=.6, tl.col="black",
title="a1 = a2 = 5", mar=c(0,0,1,0))

OmegaCor = computeAssociations(ma50)
toPlot = ((OmegaCor[[1]]$support>supportLevel)

+ (OmegaCor[[1]]$support<(1-supportLevel))>0)*OmegaCor[[1]]$mean
corrplot(toPlot, method = "color",

col=colorRampPalette(c("blue","white","red"))(200),
tl.cex=.6, tl.col="black",
title="a1 = a2 = 50", mar=c(0,0,1,0))

OmegaCor = computeAssociations(ma500)
toPlot = ((OmegaCor[[1]]$support>supportLevel)

+ (OmegaCor[[1]]$support<(1-supportLevel))>0)*OmegaCor[[1]]$mean
corrplot(toPlot, method = "color",

col=colorRampPalette(c("blue","white","red"))(200),
tl.cex=.6, tl.col="black",
title="a1 = a2 = 500", mar=c(0,0,1,0))

By plotting the inferred residual associations side by side, we can see that when we apply very strong
shrinkage, the inferred associations disappear. At low to medium shrinkage, the inferred associations remain
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Figure 17: Effects of prior shrinkage values on inferred residual associations

largely similar. This example illustrates how too much shrinkage can lead to losing the signal. In contrast, too
little shrinkage may lead to overfitting and thus modelling also noise, not just signal. Whether the estimated
associations model signal or noise can be tested e.g. by conditional cross-validation, i.e. by testing if it helps
to account the known occurrences of some species when predicting the occurrences of other species."

Other prior parameters of the Hmsc model can also be adjusted, see Appendix S1 for details.
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