
HBSTM tutorial 
 

This tutorial pretends to briefly show the nomenclature and the methodology used in the 

HBSTM package and make easier the visualization of the parameters structure of these kind of 

models. Then, we proceed to present the functions implemented in the package under two 

points of view: 

- Beginner user: we consider that the user is nearly introduced to the HBSTM 

methodology and we present the basic functions. 

- Expert user: we consider that the user is an expert in the HBSTM methodology and we 

present all the functions with all the attributes that this kind of user can exploit. 

 

1. Introduction to the Hierarchical Bayesian Space-Time models1 
In this section the HBSTM is briefly introduced, using notation similar to Wikle, Berliner and 

Cressie (1998) and Chen, Fuentes and Davis (2006), in order to introduce the notation of these 

kinds of models and to establish a starting point for the methodology proposed in this article. 

 

Our interest in this case is to estimate the non-observable process ���, �� from the observed 

process ���, ��, assuming that the data ���, �� is coming from a regular grid with � spatial 

locations and 	 temporal observations for each spatial point. In other words, � = 1,… ,� and � = 1,… , 	 under the assumption that the data follows a Gaussian process. 

 

It is important to remark that the library HBSTM is implemented to predict regular grids. In case 

you want to predict an irregular grid, we recommend to develop a regular grid containing the 

irregular predicted points. 

 

The latent variable ���, �� is related with ���, �� and is defined as: 

 ���, �� =  ∙ ���, �� + ���, ��  (1. 1) 

 

Where  is an �× � matrix which relates the spatial-temporal points between � and �; and ���, �� is a Gaussian error defined as multivariate white noise, assuming that all random noises 

are independent in space and time. 

 

The non-observed process is defined as: 

 ���, �� = ���� + 	���, �� + 	���, �� + ���, �� (1. 2) 

 

Where ���� represents the spatial mean, usually defined as a Markov Random Field (MRF) 

because of the set of positions where the field is defined in a grid and complies with the Markov 

property (in the sense that each observation depends strictly on the previous observation). In 

other words, this class of models represents the random variables and their conditional 

                                                           
1 HBSTM: An R package for Hierarchical Bayesian Space-Time models, contains part of this tutorial. 



dependences. Depending on the spatial structure of the data, the mean model will have, more 

or less, spatial dependence orders. 

 ���, �� is the large-scale temporal component and contains the required model seasonalities. It 

is usually designed to vary spatially and the temporal part is defined using trigonometric 

functions.  

 ���, �� is the small-scale temporal component and contains temporal and spatial dynamics. It is 

modeled using ‘space-time autoregressive moving-average (STARMA) and ���, �� is the random 

error following a Gaussian distribution. 

 

Note that the three structures	����, ���, �� y ���, �� are mutually independent.  

 

The estimation process of the HBSTM is based on a Markov chain Monte Carlo (MCMC) 

methodology, using a Gibbs sampling approach. For this reason, the derivation of the full 

conditional distributions for all the parameters of the model is needed. 

 

As an example, we present a simple model which is shown in Wikle, Berliner and Cressie (1998). 

This model is defined as: 

  ����� = ���� +	������ +	����� + ����� 							∀� ∈ � (1. 3) 

 

Taking into account that for each space point �, the time representation is obtained, where ���� is 

built using a nearest-neighbor model (which is defined in section 2.3) with first-order spatial 

dependence. ������ has one seasonality ′#′ and is defined using a trigonometric function. ����� is 

defined by a STARMA model with one spatial and temporal lag and ����� is the error.  Figure 1.1 

contains the parameter structure of the model in order to facilitate the ‘global vision’ of the 

problem: 



 
Figure 1.1: Model parameter structure 

 

Where the description of labels in Figure 1, from bottom to top, is: 

• $%	, &%: Spatial relation coefficients east-west and north-south of ���� 
• '%: Spatial relation matrix which contains the coefficients $% and &% 

• ����, ����(, �():	Spatial mean 

• $+, 	, &+,: Spatial relation coefficients east-west and north-south of -���. 

• '+,: Spatial relation matrix which contains the coefficients $+, and &+, 

• -���., -���.(, -.(): Temporal Autoregressive coefficients in the same spatial point. 

• /., 0., 1., 2.: Temporal autoregressive coefficients from point � with its neighbors. 

• 3.: Spatial-temporal relation matrix which contains the coefficients -���., /., 0., 1. and 2. 

• 4 = 56	789:����������	7;�������< ≡ � × 3 linear trend ‘design’ matrix 

• ?��, ?).: ‘cosine’ coefficients 

• @���, @).: ‘sine’ coefficients 

 

If we analyze this example carefully, we notice that it would be one of the simplest HBSTM 

models, in that it contains only one seasonality, one temporal lag and the simplest of spatial 

structures. 

 

As is the case in other methodologies, the complexity model increases depending on the 

observed process ���, ��. It could need more seasonalities and more spatial or temporal lags, 

thereby making the parameter structure and its estimation procedure more complex. Moreover, 

this complexity could make it more difficult to obtain the best model for fitting the data. 
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This complexity causes the space-time structure and conditional distributions to vary for each 

model, and therefore more difficult to implement them. Luckily, some patterns exist for 

extending the model and calculating the conditional distribution.  

 

As a result, we could generalize the calculations for extending those kinds of models. An 

important contribution in this tutorial is that we explain how to implement the HBSTM with A 

seasonalities,  temporal lags and other more complex spatial structures. 

 

 

 

  



2. Generic model definition 
In this section we define a generic model definition of the HBSTM methodology.  This model 

has the following characteristics: 

- A  seasonalities in the ������ component. 

-  autoregressive temporal lags in the ����� component. 

- The spatial structure of the model is defined as a full lagged rose diagram. 

This is the general structure implemented in our proposed package and, in the following 

definitions we will link the theoretical parameters with its names defined in the classes and 

attributes of our package. 

 

2.1. First stage: measurement process 

Now, the considered model is 

B���� = C����� + D���    (2. 1) 

where B���� is an �× 1 vector of observations; ����� is an � × 1 state vector; C is an � × � matrix 

that maps the temperature values at grid locations according to the observations; and D��� is an � × 1 vector representing the error. We assume that B���� is conditionally Gaussian: 

EB����|C, ����� , GHIJ~L;M5C����� , GHIN<  (2. 2) 

2.2. Second stage: large and small scale features 

At this point, the model for the state process ����� is 

����� = ���� +������ + ����� + ���   (2. 3) 

where ���� are the spatial means defined with a spatial structure; ������ is the spatial seasonal 

component; ����� is the intra-seasonal space-time component; and ����� is an error term. We 

assume that ����� is conditionally Gaussian: 

E�����|����,������ , �����, ����OJ~L;M5���� + ������ + �����, GPIN<   (2. 4) 

For further explanation about this part, see section A.2 in Wikle, Berliner and Cressie (1998) 

and López and Muñoz (2013) 

2.3. Third stage: spatial structures 

We assume that  ����, ������ and ����� are mutually independent, conditional on third-stage 

parameters. 

���� is defined using a Gaussian MRF (Markov Random Field) with full-lagged rose diagram spatial 

dependence (see plot…) 

 



 

Figure 2.1: Full-lagged rose diagram structure 

Where α���, β��, φ��� and T� have the same pattern in both senses of the same direction: 

• α��� = Uα., … , αV,W 
• β�� = Uβ., … , βVXW 
• φ��� = Uφ., … , φVYW 
• T� = UT., … , TVZW 

That is, for grid locations [ = 1,… ,� and 7 = 1,… , 9, where [ and 7 are indices correspondig 

to the longitudes and the latitudes, the conditional distribution of ��[, 7� is: 

��[, 7�|U��\, ]�: �\, ]�
≠ �[, 7�W~L;M _�(�[, 7�
+ ` $%a b5��[ − \, 7� − �(�[ − \, 7�< + 5��[ + \, 7� − �(�[ + \, 7�<da∈V,+ ` &%a b5��[, 7 − \� − �(�[, 7 − \�< + 5��[, 7 + \� − �(�[, 7 + \�<da∈VX+ ` e%a b5��[ − \, 7 − \� − �(�[ − \, 7 − \�<a∈VY+ 5��[ + \, 7 + \� − �(�[ + \, 7 + \�<d+ ` T%a b5��[ − \, 7 + \� − �(�[ − \, 7 + \�<a∈VZ
+ 5��[ + \, 7 − \� − �(�[ + \, 7 − \�<d , f%Ig 

(2. 5) 

Where ����( is the gridpoint specific MRF mean, h���%, i���%, j����% and k���%(east-weast, north-south, 

northweast-southeast and northeast-southweast, respectively) MRF spatial despendence 

parámeters and f%I is the variance. The mean ���� also can be defined as: 

����|b����(, f%I, h���% , i���% , j����% , k���%d~L;M l����(, 5N − '%<m.f%In  (2. 6) 

Where '% is an � × � matrix with the off-diagonals given by h���%, i���%, j����% and k���%. 
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The seasonal component is defined with A seasonalities with amplitudes and phases that vary 

spatially: 

������ =`?��a cos�#a�� + @���a sin�#a��t
au.  

(2. 7) 

Where: 

• #a = the seasonality which corresponds to  
Ivwx , where [a is the period of the seasonality \ = 1,… ,A. 

• A = total number of seasonalities  

 

Moreover, ?��a and @���a \ = 1,… ,A are spatially varying ‘cosine’ and ‘sine’ coefficients 

respectively, and are defined for \ = 1,… ,A: 

ya�[, 7� = yaz1{ + yaz2{789:�[� + yaz3{7;���[�  (2. 7) 

:a�[, 7� = :az1{ + :az2{789:�[� + :az3{7;���[� (2. 8) 

Where yaz]{ and :az]{, ] = 1,2,3 are independent Gaussian random variables: 

yaz]{~L;M5y}az]{, G~�xI z]{<  (2. 9) 

:az]{~L;M5:~az]{, G~�xI z]{< (2. 10) 

and their parameters are fixed and specified. Then, generalizing,  

?��a = 56		789:����������		7;�������<�yaz1{, yaz2{, yaz3{�� = 4?a)  (2. 11) 

Where 4 is a � × 3 linear trend ‘design’ matrix and ?a) ≡ �yaz1{, yaz2{, yaz3{��. Then, from their 

independence 

?a)|?� a), ���x~L;M5?� a) , ���x<  (2. 12) 

where ?� a) ≡ 5y}az1{, y}az2{, y}az3{<� and ���xis a 3 by 3 diagonal matrix with σ��xI z1{, σ��xI z2{, and σ��xI z3{ variances on the main diagonal.  

Similarly, 

@���a = 56		789:����������		7;�������<�:az1{, :az2{, :az3{�� = 4@a)  (2. 13) 

where @a) ≡ �:az1{, :az2{, :az3{��. Then, from their independence 

@a)|@�a) , ���x~L;M5@�a) , ���x<  (2. 14) 

where @�a) ≡ �:~az1{, :~az2{, :~az3{�� and ���x is a 3 by 3 diagonal matrix with σ��xI z1{, σ��xI z2{, and σ��xI z3{ variances on the main diagonal.  

 

 

 



In the general case, the small-scale space-time term is modeled as a VAR model process.                                                                

����� =`3������m� + ������
�u. 									∀� ∈ � 

(2. 16) 

Where: 

•  = number of lags 

•  ����� is the random  error following a Gaussian distribution 

• 3� is a � × � space-time matrix 

 

The spatial relationships between the temporal lags are stored in the 3� matrix, although, 

depending on this defined spatial relation, the distribution of the parameters in 3� may change. 

 

Regarding the parameters in 3�, the vector -���� is located on the main diagonal and it is the ‘pure’ 

autoregressive parameter, i. e., it is the relation of a spatial point with itself in the past. In the 

subdiagonals are stored the temporal autoregressive parameters of a spatial point related with 

its spatial neighbors. In other words, and using the example in Figure 2.2 of the fixed temporal 

lag � and spatial point 1, ℎ�.,.��m�.  shows the temporal relationship of spatial point 1 with itself 

while ∑ ℎ�.,a��m�a�auI  exhibits the temporal relationship with the rest of the spatial points of the 

grid. 

 

3������m� = �ℎ�.,. ℎ�.,I … ℎ�.,�⋮ ⋮ ⋱ ⋮… ����m�.⋮��m�� � 

Figure 2.2: 3� and ����Om� multiplication  

 

We consider the full-lagged rose diagram spatial dependence VAR model (Figure 2. 3) and the 

vectors which contains that special structure are defined as: 

• ������ = �2;�� = b��., … ,��V,d 
• ���� = �;�� = b��., … , ��V,d 
• ����� = A8��ℎ = bA�., … , A�VXd 
• ��� = �8M�ℎ = b��., … , ��VXd 
• �������� = �8M�ℎ�;�� = b���., … , ���VYd 
• ����������� = A8��ℎ�2;�� = bA��., … , A��VYd 
• ���������� = �8M�ℎ�2;�� = b���., … , ���VZd 
• ���������� = A8��ℎ�;�� = bA��., … , A��VZd 



 

Figure 2.3: Full-lagged rose diagram structure considering different behaviors in both ways of one direction 

Thus, we define �5�[, 7�, �< as: 

�5�[, 7�, �< = ` _;��[, 7��5�[, 7�, � − \<�∈U.,…,�W
+`E����5�[, 7 + ]�, � − \< +����5�[, 7 − ]�, � − \<JV,

�u.
+`EA���5�[ + ], 7�, � − \< + ����5�[ − ], 7�, � − \<JVX

�u.
+`E�����5�[ + ], 7 + ]�, � − \< + A����5�[ − ], 7 − ]�, � − \<JVY

�u.
+`E�����5�[ + ], 7 − ]�, � − \< + A����5�[ − ], 7 + ]�, � − \<JVZ

�u. g
+ �5�[, 7�, �< 

(2. 15) 

And we assume 

�����|b�����m., 3., … , �����m� , 3� , GVId~L;M53.�����m. +⋯+3������m� , G�IN< (2. 16) 

Where 3� is a diagonal matrix with off-diagonals given by ������, ����, �����, ���, ��������, �����������, 	���������� and ��������� directions and the main diagonal contains the vector -���� 

 

2.4. Fourth stage: priors on parameters 

The mean ����( is represented as: 

�(�[, 7� = �(z1{ + �(z2{789:�[� + �(z3{7;��7�  (2. 17) 

Where 789:�[� and 7;��7� are the longitude and latitude of the �[, 7�th gridpoint, respectively 

and the regression coefficients �(z1{, �(z2{, �(z3{ are specified to be independent Gaussian 

random variables: 

�(z]{~L;M5�~(z]{, G~%�I z]{<										] = 1,2,3  (2. 18) 

Where their parameters are fixed and specified. 
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Then, generalizing, 

����( = 56		789:����������		7;�������<��(z1{, �(z2{, �(z3{�� = 4�()  (2. 19) 

Where 4 is a � × 3 linear trend ‘design’ matrix, and �() ≡ ��(z1{, �(z2{, �(z3{�� is the linear 

trend parameter vector. Then, from their independence 

�()~L;M5��() , ��%��<  (2. 20) 

Where ��%��  is a 3 x 3 diagonal matrix with G~%��I z1{, G~%��I z2{	and G~%��I z3{ variances on the main 

diagonal. 

 

The vectors h���%, i���%, j����% and k���% are defined as independent Gaussian random parameters, but 

constrained to ensure positive-definieness of �% 

$%a~L;M l$~%a , G~ ¡xI n 			\ = 1,… , 9.  (2. 21) 

&%a~L;M l&�%a , G~¢¡xI n 			\ = 1,… , 9I  (2. 22) 

e%a~L;M le~%a , G~£¡xI n 			\ = 1,… , 9¤  (2. 23) 

T%a~L;M lT�%a , G~¥¡xI n 			\ = 1,… , 9¦  (2. 24) 

Where their parameters are fixed and specified. 

 

We define de autoregressive parameters -���� (� = 1,… , ) using a Gaussian MRF with full-

lagged rose diagram spatial dependence (Figure 2. 1) in order to fit our proposed model to the 

case of three seasonalities 

;��[, 7�|U;��\, ]�: �\, ]�
≠ �[, 7�W~L;MU_;�(�[, 7�
+ ` $+§a b5;��[ − \, 7� − ;�(�[ − \, 7�< + 5;��[ + \, 7� − ;�(�[ + \, 7�<da∈V,+ ` &+§a b5;��[, 7 − \� − ;�(�[, 7 − \�< + 5;��[, 7 + \� − ;�(�[, 7 + \�<da∈VX+ ` e+§a b5;��[ − \, 7 − \� − ;�(�[ − \, 7 − \�<a∈VY+ �;��[ + \, 7 + \� − ;�(�[ + \, 7� + \�d+ ` T+§a b5;��[ − \, 7 + \� − ;�(�[ − \, 7 + \�<a∈VZ
+ 5;��[ + \, 7 − \� − ;�(�[ + \, 7 − \�<d , f+§I g 

(2. 25) 



Where -����( is the gridpoint specific MRF mean, h���+§, i���+§, j����+§  and k���+§(east-weast, north-south, 

northweast-southeast and northeast-southweast vectors, respectively) MRF spatial 

despendence parameters and f+§I  is the variance.  

The parameters h���%, i���%, j����% and k���% are stored in the off-diagonals of the � × � matrix '+§. 

 

The autoregressive parameters, that represent the full-lagged rose diagram spatial dependence, 

are assumed that follow independent Gaussian distributions. 

��a~L;M���(�a , G~ �̈©I �			\ = 1,… , 9.  (2. 26) 

��a~L;M���(�a , G~ª�©I �			\ = 1,… , 9.  (2. 27) 

A�a~L;M�A�(�a , G~t�©I �				\ = 1,… , 9I  (2. 28) 

��a~L;M��}(�a , G~��©I �			\ = 1,… , 9I   (2. 29) 

SE�a~L;M���(�a , G~���©I �			\ = 1,… , 9¤  (2. 30) 

A��a~L;M�A� (�a , G~t �̈©I �			\ = 1,… , 9¤  (2. 31) 

SW�a~L;M��� (�a , G~���©I �			\ = 1,… , 9¦  (2. 32) 

A��a~L;M�A� (�a , G~tª�©I �			\ = 1,… , 9¦  (2. 33) 

Where their parameters are fixed and specified. 

 

For the variances specified in stages one though three, independence between them is 

assumed and use the conjugate priors  

GĪ~°L�±~¯ , �̃̄ �  (2. 34) 

GPI~°L5±~P , �̃P<  (2. 35) 

G�I~°L5±~� , �̃�<  (2. 36) 

f%I~°L5±~% , �̃%<  (2. 37) 

 

2.5. Fifth stage: hyperpriors 

Assumed that -���(� has simple spatial trend structure: 

;�(�[, 7� = ;�(z1{ + ;�(z2{789:�[� + ;�(z3{7;��7�						� ∈ U1,… , W (2. 38) 

Where the regression coefficients ;�(z1{, ;�(z2{, ;�(z3{ are specified to be independent 

Gaussian random variables: 

;�(z]{~L;M l;~�(z]{, G~+§�I z]{n 						] = 1,2,3  (2. 39) 

and their parameters are fixed and specified. Then, generalizing (2. 40),  



-���.( = 56		789:����������		7;�������<�;.(z1{, ;.(z2{, ;.(z3{�� = 4-.() (2. 40) 

Where 4 is a � × 3 linear trend ‘design’ matrix, and -.() ≡ �;.(z1{, ;.(z2{, ;.(z3{�� is the linear 

trend parameter vector. Then, from their independence 

-.()~L;M l-�.(), ��+,��n  (2. 41) 

Where ��+,��  is a 3 x 3 diagonal matrix with G~+,��I z1{, G~+,��I z2{	and G~+,��I z3{ on the main diagonal. 

 

We define h���+§, i���+§, j����+§  and k���+§  as independent Gaussian random variables, but constrained 

to ensure positive-definieness of �+§ 

$+§a ~L;M l$~+§a , G~ ³§xI n 			\ = 1,… , 9.  (2. 42) 

&+§a ~L;M l&�+§a , G~¢³§xI n 			\ = 1,… , 9I  (2. 43) 

e+§a ~L;M le~+§a , G~£³§xI n 			\ = 1,… , 9¤  (2. 44) 

T+§a ~L;M lT�+§a , G~¥³§xI n 			\ = 1,… , 9¦  (2. 45) 

And we use de inverse Gamma distribution to conjugate the prior f+§I  

f+§I ~°L5±~+§ , �̃+§< (2. 46) 

where their parameters ±~+§  and �̃+§ are fixed and specified. 

 

2.6. Structure diagram of the model parameters 

In the Figure 2.4 we show the generalized model structure to make easier to understand how 

is structured the object of class HBSTM. 

 



Figure 2.4: Generalized model parameters structure 
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3. Transcription to the model parameters 

In this section we show how can be extracted all the model parameters and its hyperpriors. 

Parameter R extraction B���� Object[‘Zt’] C Object[‘K’] 4 Object[‘P’] ����� Object[‘Parameters’][‘Yt’] GHI Object[‘Parameters’][‘sigma2E’] ���� component Object[‘Parameters’][‘Mu’] ������ component Object[‘Parameters’][‘Mt’]  ����� component Object[‘Parameters’][‘Xt’] GPI Object[‘Parameters’][‘sigma2Y’] ���� Object[‘Parameters’][‘Mu’][‘muvect’] ����( Object[‘Parameters’][‘Mu’][‘mu0vect’] �() Object[‘Parameters’][‘Mu’][‘mu0L’] f%I Object[‘Parameters’][‘Mu’][‘sigma2Mu’] '% Object[‘Parameters’][‘Mu’][‘spatialMu’][‘Cmat’] h���% Object[‘Parameters’][‘Mu’][‘spatialMu’][‘alpha’] i���% Object[‘Parameters’][‘Mu’][‘spatialMu’][‘beta’] j����% Object[‘Parameters’][‘Mu’][‘spatialMu’][‘phi’] k���% Object[‘Parameters’][‘Mu’][‘spatialMu’][‘theta’] 

������ Object[‘Parameters’][‘Mt’][‘Mt’] #a Object[‘Parameters’][‘Mt’][‘seas’][[i]][‘w’] ?��a Object[‘Parameters’][‘Mt’][‘seas’][[i]][‘fvect’] ?a) Object[‘Parameters’][‘Mt’][‘seas’][[i]][‘f0L’] @���a Object[‘Parameters’][‘Mt’][‘seas’][[i]][‘gvect’] @a) Object[‘Parameters’][‘Mt’][‘seas’][[i]][‘g0L’] ����� Object[‘Parameters’][‘Xt’][‘Xt’] ����( Object[‘Parameters’][‘Xt’][‘X0’] G�I Object[‘Parameters’][‘Xt’][‘sigma2N’] 3� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘H’] -���� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘avect’] -����( Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘a0vect’] -�() Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘a0L’] f+§I  Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘sigma2A’] '+§ Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘spatialA’][‘ Cmat’] h���+§ Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘spatialA’][‘ alpha’] i���+§  Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘spatialA’][‘ beta’] j����+§  Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘spatialA’][‘ phi’] k���+§ Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘spatialA’][‘ theta’] 

������ Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘subdiag’][‘w est’] ���� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘subdiag’][‘e ast’] ����� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘subdiag’][‘n orth’] ��� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘subdiag’][‘s outh’] �������� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘subdiag’][‘s outheast’] 



����������� Object[‘Parameters’][‘Xt’][‘AR’][[r]][‘subdiag’][‘n orthwest’] ���������� Object[‘Parameters’][‘Xt’][‘AR’][[i]][‘subdiag’][‘s outhwest’] ��������� Object[‘Parameters’][‘Xt’][‘AR’][[i]][‘subdiag’][‘n ortheast’] 

Figure 3.1: Parameters model transcription to an object of class HBSTM 
 

 

Hiperprior R extraction ±~¯ Object[‘Hyperpriors’][‘  sigma2E0’][1]  �̃̄  Object[‘Hyperpriors’][‘  sigma2E0’][2]  ±~P Object[‘Hyperpriors’][‘  sigma2Y0’][1]  �̃P Object[‘Hyperpriors’][‘  sigma2Y0’][2]  ��() Object[‘Hyperpriors’][‘Mu0’][‘  mu0L0’]  ��%��  Object[‘Hyperpriors’][‘Mu0’][‘  sigmu0L0’]  ±~% Object[‘Hyperpriors’][‘Mu0’][‘  sigma2Mu0’][1]  �̃% Object[‘Hyperpriors’][‘Mu0’][‘  sigma2Mu0’][2]  $~%a  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  alpha0’][1,]  G~ ¡xI  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  alpha0’][2,]  

&�%a  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  beta0’][1,]  G~¢¡xI  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  beta0’][2,]  

e~%a  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  phi0’][1,]  G~£¡xI  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  phi0’][2,]  

T�%a  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  theta0’][1,]  G~¥¡xI  Object[‘Hyperpriors’][‘Mu0’][‘  spatialMu0’][‘  theta0’][2,]  

±~� Object[‘Hyperpriors’][‘Xt0’][‘  sigma2N0’][1]  �̃� Object[‘Hyperpriors’][‘Xt0’][‘  sigma2N0’][2]  ����½�  Object[‘Hyperpriors’][‘Xt0’][‘  X00’]  Σ½�  Object[‘Hyperpriors’][‘Xt0’][‘  sigma2X00’] -��() Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  a0L0’]  ��+§��  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  siga0L0’]  ±~+§  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  sigma2A0’][1]  �̃+§ Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  sigma2A0’][2]  $~+§a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ alpha0’][1,]  G~ ³§xI  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ alpha0’][2,]  

&�+§a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ beta0’][1,]  G~¢³§xI  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ beta0’][2,]  

e~+§a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ phi0’][1,]  G~£³§xI  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ phi0’][2,]  

T�+§a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ theta0’][1,]  G~¥³§xI  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  spatialA0’][‘ theta0’][2,]  

��(�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  west0’][1,]  G~ �̈©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  west0’][2,]  

��(�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  east0’][1,]  G~ª�©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  east0’][2,]  



A�(�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  north0’][1,]  G~t�©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  north0’][2,]  

�}(�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  south0’][1,]  G~��©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  south0’][2,]  

��(�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  southeast0’][1,]  G~���©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  southeast0’][2,]  

A� (�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  northwest0’][1,]  G~t �̈©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  northwest0’][2,]  

�� (�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  southwest0’][1,]  G~���©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  southwest0’][2,]  

A� (�a  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  northeast0’][1,]  G~tª�©I  Object[‘Hyperpriors’][‘Xt0’][‘  AR0’][[r]][‘  subdiag0’][‘  northeast0’][2,]  

Figure 3.2: Hyperpriors model transcription to an object of class HYPERPRIOR 
 

  



4. Example 

The HBSTM package contains a real dataset in order to use it as example. The data store the 

temperature, which is collected in a grid of 70 points (n=7 x m=10 points in the grid) in the area 

that extends from 4º 30" W to 6º 30"W longitude, and from 35º 3"N to 36º 5"N. 

The analyzed period covers January 1st 2009 to December 31st 2010; the frequency of the data 

is every 3 hours (temporal reference system is UTC); it starts at 00:00 (daily analysis) and 

forecasting is at 3:00, 6:00, 9:00, 12:00, 15:00, 18:00 and 21:00. The temperature is recorded 

every day, eight times a day; so we have a time series for each variable: one for each point on 

the grid with 5840 time observations. 

Our purpose is to fit the data ‘hirlam’ using a HBSTM with the following characteristics: 

- We fit the same spatial points. Then C is the identity matrix. 

- Two seasonalities in ������: #. = 2¿/2920	and #I = 2¿/�2920/2). 

- The autoregressive component ����� is defined as: ����� = 3.�����m. +3I�����mI +3Â�����mÂ +3.Ã�����m.Ã + ��� 
- The spatial structure of the model is five-lagged rose diagram. 

Then, we loading the package HBSTM, the dataset ‘hirlam’ and its coordinates. 

 

In the next sections we present the functions of the package by two points of views: A 

beginner user and an expert user. 

4.1. Beginner user 

In this section we present the main functions of HBSTM from a beginner point of view. In other 

words, we use the functions using the most common attributes to can fit the data and analyze 

the fitted model. 

We have decided that our model fits the observed spatial points. Then, the � × � matrix C is 

the identity where � = �. The autoregressive temporal lags are 1, 8 and 16. The seasonal 

component is defined with an annual (2920) and semiannual (2920/2) components. Finally, we 

consider five spatial lags in each direction at the spatial component. 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> set.seed(198193696) 
> library(HBSTM) 
> data(hirlam) 
> dim(hirlam) 
[1]   70 5840 
> data(coordinates) 
> dim(coordinates) 
[1] 70  2 



Although this methodology require thousands of iterations to fit the data, we fit the model 

only 10 iterations in order to get faster results. 

 

For each iteration, the function shows a plot with four graphics (Figure 4.1) where displays: the 

MSE of the execution; the observed values versus the predicted in a spatial point; and the 

ACF/PACF of the residuals in a spatial point. 

 

Figure 4.1: hbstm graphical output 

Once the model is fitted, we proceed to check the results. The HBSTM provides different 

functions to analyze the residuals of the fitted model, the estimation and the MCMC samples 

of the parameters. 
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R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> S=dim(coordinates)[1] 
>model=hbstm(Zt=hirlam,K=diag(rep(1,S)),newGrid=coo rdinates,reglag=c(1,8,16
),seas=c(2920,2920/2),spatlags=c(5,5,5,5),nIter=10, fit=TRUE,save="Parameter
s") 
-------- The approximated execution time is: 0.0326 9444 hours------ 
Iteration 1: MSE = 78530973 
Iteration 2: MSE = 42624482 
Iteration 3: MSE = 20338125 
Iteration 4: MSE = 10366690 
Iteration 5: MSE = 5812885 
Iteration 6: MSE = 3650983 
Iteration 7: MSE = 2474099 
Iteration 8: MSE = 1839887 
Iteration 9: MSE = 1409945 
Iteration 10: MSE = 1235579 



The first step is to study the model residuals. The object of class HBSTM model  contains the 

residuals, then, to extract it we use model[“residuals”]  and, for example, draw an 

histogram of a spatial point (Figure 4.2). Moreover, the function plotRes  performs the 

figures 4.3 (a) and (b) in order to get more detailed residuals analysis and validate the model.  

 

Figure 4.2: Histogram of the residuals in the spatial point 1 

 

 
(a) 

 
(b) 

Figure 4.3: plotRes output showing the residual analisis 

 

To compare the spatial behavior in a specific time, we can use the function plotFit  where 

shows a plot with the real B���� observations, the B���� estimations and the residuals in a fixed time 

(Figure 4.3). With this function we can easily see similarities or differences between the 

observed and estimated values. In our case the residuals are very bad because we have 

executed only 10 iterations. 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> hist(model["residuals"][1,],main="Histogram of th e model residuals in the 
spatial point 1",xlab="Residuals") 
> plotRes(model) 



 

Figure 4.3: plotFit output with the spatial fit analysis in the last temporal observation 

Finally, we can study the values of the fitted model parameters. The function results  

shows, in the console and with plots, a summary containing the median and the 95% credibility 

intervals of the MCMC samples of the parameters. As example, in Figure 4.4 we can see the 

estimation of the seasonal parameters of #. = 2¿/2920	 (a) and the spatial parameters of ���� 
(b). 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> plotFit(model) 



  
Figure 4.4: Part of the results output where shows the median and 95% credibility intervals for (a) the 

seasonal parameters in w=2920 and (b) the spatial parameters of  ���� 
 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> results(model,plots=TRUE) 
 
… 
 
------------------------------------------ 
              Mu component 
------------------------------------------ 
… 
 
---- Spatial parameters: 
      lag1                  lag2                    lag3                   
alpha "0.007[-0.019,0.022]" "0.014[-0.022,0.024]"   "0.012[-0.017,0.028]"  
beta  "0.014[-0.031,0.025]" "0.011[-0.032,0.036]"   "-0.021[-0.04,0]"      
phi   "0.008[-0.029,0.022]" "-0.014[-0.034,-0.012]"  "0.024[-0.032,0.037]"  
theta "0.023[-0.038,0.035]" "-0.018[-0.033,0.014]"  "-0.012[-0.041,0.027]" 
      lag4                   lag5                   
alpha "0.009[-0.018,0.03]"   "-0.005[-0.027,0.017]"  
beta  "-0.006[-0.042,0.026]" "-0.003[-0.04,0.034]"  
phi   "-0.028[-0.051,0.024]" "0.021[-0.047,0.047]"  
theta "0.01[-0.036,0.03]"    "-0.021[-0.043,0.039]"  
 
------------------------------------------ 
              Mt component 
------------------------------------------ 
 
----- Seasonal 1 (w=2920): 
        Median  Low CI High CI 
fvect   -4.630      NA      NA 
f0L[1]  -9.859  -9.859  -9.859 
f0L[2] -14.502 -14.502 -14.502 
f0L[3] -18.069 -18.069 -18.069 
gvect   -4.014      NA      NA 
g0L[1]  -9.770  -9.770  -9.770 
g0L[2] -17.614 -17.614 -17.614 
g0L[3] -20.182 -20.182 -20.182 
a0L[2]  6.841  6.841   6.841 
a0L[3]  7.958  7.958   7.958 
… 



 

On the other side, in case we want to work with the median estimation of the parameters, the 

function estimation  returns an object of class Parameters containing all the parameters 

estimations. 

 

 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> est=estimation(model) 
> est 
 
-------------- Model definition ---------------- 
-- Seasonalities: 
   w1   w2 
 2920 1460 
-- Autoregressive temp. lags: 
    AR1 AR2 AR3 
lag   1   8  16 
-- Spatial lags: 
 east-weast north-south southeast-northwest southwe st-northeast 
          5           5                   5                   5 
 
--------- Values  of the Parameters ---------- 
---- Sigmas: 
 sigma2E sigma2Y sigma2Mu sigma2A-1 sigma2A-8 sigma 2A-16 
   2.258   1.532    0.001     0.007     0.007      0.007 
 
---- Mu component: 
 muvect mean mu0vect mean mu0L[1] mu0L[2] mu0L[3] 
    64.04633     64.04506  92.951   0.145  -0.787 
-- Spatial Mu parameters: 
        lag1   lag2  lag3   lag4   lag5 
alpha  0.016  0.006 0.014 -0.019 -0.022 
beta   0.018 -0.006 0.010  0.005 -0.011 
phi   -0.009 -0.012 0.022 -0.016 -0.035 
theta  0.000  0.002 0.012 -0.027  0.014 
 
---- Mt component: 
-- Seasonal w1 = 2920: 
 fvect mean f0L[1] f0L[2] f0L[3] gvect mean g0L[1] g0L[2] g0L[3] 
  -4.710886 -6.889 -0.454  0.095  -4.092614 -9.817 -0.706  0.148 
-- Seasonal w2 = 1460: 
 fvect mean f0L[1] f0L[2] f0L[3] gvect mean g0L[1] g0L[2] g0L[3] 
 -0.1623429  9.564 -0.059 -0.282  0.9111714  0.411  0.244  0.039 
 
---- Xt component: 
-- Autoregressive 1 (t-1) 
 avect mean a0vect mean a0L[1] a0L[2] a0L[3] 
 0.06941429  0.08205714   2.92 -0.026 -0.011 
-- Spatial avect parameters: 
        lag1   lag2   lag3   lag4   lag5 
alpha -0.009  0.002 -0.003  0.000 -0.006 
beta   0.007 -0.013  0.011 -0.016 -0.025 
phi   -0.014 -0.019 -0.005 -0.016 -0.019 
theta -0.005  0.021 -0.016 -0.012  0.000 



 

  

 

  

-- Space-time parameters: 
            lag1   lag2   lag3   lag4   lag5 
east       0.006  0.004  0.003  0.001  0.007 
west      -0.007 -0.004 -0.002  0.002  0.010 
north      0.007  0.013 -0.005 -0.003 -0.006 
south      0.032  0.019  0.016  0.025  0.026 
southeast  0.014  0.014  0.036  0.036  0.034 
northwest -0.009  0.009 -0.002  0.011  0.005 
southwest -0.003 -0.029  0.007  0.030  0.043 
northeast -0.043 -0.032 -0.040 -0.020 -0.029 
-- Autoregressive 2 (t-8) 
  avect mean  a0vect mean a0L[1] a0L[2] a0L[3] 
 -0.01424286 -0.001314286   2.92 -0.026 -0.011 
-- Spatial avect parameters: 
        lag1   lag2   lag3   lag4   lag5 
alpha -0.009  0.002 -0.003  0.000 -0.006 
beta   0.007 -0.013  0.011 -0.016 -0.025 
phi   -0.014 -0.019 -0.005 -0.016 -0.019 
theta -0.005  0.021 -0.016 -0.012  0.000 
-- Space-time parameters: 
            lag1   lag2   lag3   lag4   lag5 
east       0.006  0.004  0.003  0.001  0.007 
west      -0.007 -0.004 -0.002  0.002  0.010 
north      0.007  0.013 -0.005 -0.003 -0.006 
south      0.032  0.019  0.016  0.025  0.026 
southeast  0.014  0.014  0.036  0.036  0.034 
northwest -0.009  0.009 -0.002  0.011  0.005 
southwest -0.003 -0.029  0.007  0.030  0.043 
northeast -0.043 -0.032 -0.040 -0.020 -0.029 
 
-- Autoregressive 3 (t-16) 
  avect mean a0vect mean a0L[1] a0L[2] a0L[3] 
 0.007714286  0.01075714   2.92 -0.026 -0.011 
-- Spatial avect parameters: 
        lag1   lag2   lag3   lag4   lag5 
alpha -0.009  0.002 -0.003  0.000 -0.006 
beta   0.007 -0.013  0.011 -0.016 -0.025 
phi   -0.014 -0.019 -0.005 -0.016 -0.019 
theta -0.005  0.021 -0.016 -0.012  0.000 
-- Space-time parameters: 
            lag1   lag2   lag3   lag4   lag5 
east       0.006  0.004  0.003  0.001  0.007 
west      -0.007 -0.004 -0.002  0.002  0.010 
north      0.007  0.013 -0.005 -0.003 -0.006 
south      0.032  0.019  0.016  0.025  0.026 
southeast  0.014  0.014  0.036  0.036  0.034 
northwest -0.009  0.009 -0.002  0.011  0.005 
southwest -0.003 -0.029  0.007  0.030  0.043 
northeast -0.043 -0.032 -0.040 -0.020 -0.029 



4.2. Expert user 

In this section we present the main functions of HBSTM from an expert point of view. Then, we 

use all the functions with all their features to fit the data and analyze the fitted model. 

Again, we fit the data hirlam  and we fit the same spatial grid. Then, the � × � matrix C is 

the identity where � = �. The function hbstm  assign automatically the priors/hiperpriors and 

the initial values of the model parameters. This feature helps to the user avoiding to insert all 

the values before execute the MCMC algorithm. On the other hand, the automatically 

generated values has several contraries that we have to take into account: 

- Being automatic values do not reflects the previous knowledge of the user. 

- Could induce to converge to a local minimum. 

-  In high complex models, the values may not be good enough and the algorithm 

performance fails and crashes. 

To avoid these tricky parts, we have implemented the option to not fit the model with the 

function hbstm . By this way, the function returns the object of class HBSTM containing all the 

model structure and all the automatic values before it is implemented. Then, we can define all 

the hiperpriors values and the initial values that we want to insert.  

For example, fitting the hirlam  model, we want to change the initial values of h���% and the 

hiperprior values of the G�I parameter (±~� and �̃�). Then, we create the model with the hbstm  

function but assigning FALSE to the fit  attribute. The next step is assign to the object model  

the desired values. 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
> S=dim(coordinates)[1] 
> 
model=hbstm(Zt=hirlam,K=diag(rep(1,S)),newGrid=coor dinates,reglag=c(1,8,16)
,seas=c(2920,2920/2),spatlags=c(5,5,5,5),fit=FALSE)  
>  
> model["Parameters"]["Mu"]["spatialMu"]["alpha"]=c (0.2,0.1,-0.5,0,0.02) 
>  
> model["Hyperpriors"]["Xt0"]["sigmaN0"]=c(10,100) 



Now, we use the function hbstm.fit  to fit the modified model. To make faster the 

execution, again we execute the model only 10 iterations with a burning period of 2. 

Moreover, we indicate to the function to show the estimated time of execution and, for each 

iteration, the estimated time remaining execution and the execution plots. Also, we want that 

the function returns the mean and standard deviation of the fitted values and, finally, that 

returns the MCMC samples of the autoregressive temporal component (�����) of the model.  

We have indicated that the model only save the MCMC sample of the autoregressive (�����) 
component. This feature is very helpful because, fitting big datasets, the function requires less 

memory RAM. In case we want to study the rest of the parameters, we only have to fit more 

iterations with the function hbstm.fit  and save the other structures. 

Using the function plotRes  we can check the quality of the residuals. In this case, we 

indicate to show the time residuals of the spatial point 1 and 500 lags with a period of 8 in the 

ACF/PACF plots. These results are shown in the figure 4.5. Again, the residuals shows a bad 

behavior because we have only executed the algorithm 10 iterations. 

 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
>model=hbstm.fit(HBSTM=model,nIter=10,nBurn=2,time= TRUE,timerem=TRUE,plots=
TRUE,posterior="mean",save="Xt") 
-------- The approximated execution time is: 0.0354 7222 hours------ 
Iteration 1: MSE = 78601235 
Iteration 2: MSE = 42496634 
-------- The approximated time remaining is: 0.0282 6667 hours------ 
Iteration 3: MSE = 20260160 
-------- The approximated time remaining is: 0.0239 75 hours------ 
Iteration 4: MSE = 10354267 
-------- The approximated time remaining is: 0.0223 1667 hours------ 
Iteration 5: MSE = 5859310 
-------- The approximated time remaining is: 0.0192 6389 hours------ 
Iteration 6: MSE = 3632600 
-------- The approximated time remaining is: 0.0155 8889 hours------ 
Iteration 7: MSE = 2451828 
-------- The approximated time remaining is: 0.0118 75 hours------ 
Iteration 8: MSE = 1936936 
-------- The approximated time remaining is: 0.0080 38889 hours------ 
Iteration 9: MSE = 1618933 
-------- The approximated time remaining is: 0.0042 5 hours------ 
Iteration 10: MSE = 1512878 
-------- The approximated time remaining is: 0 hour s------ 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
>plotRes(object=model,point=1,ARlags=500,ARperiod=8 ) 



 

Figure 4.5: plotRes output of the spatial point 1 residuals and squared residuals ACF/PACF showing the data 

period and 500 lags. 



In the next step, we check the parameters estimation using the function results . Since we 

have save the MCMC samples of �����, the function only shows the estimation of this part. Now, 

we want to check the estimation in the spatial point s=1 in the time t=1 and in the spatial point 

s=34 when t=2546 (Figure 4.6). Moreover, we change the % of the credibility intervals to 99 

and the number of decimal digits is 2. We only show a part of the results. 

 

R code and outputs:R code and outputs:R code and outputs:R code and outputs:    
>results(object=model,spatTemp=list(c(1,1),c(34,254 6)),inter=0.99,digits=2,component="Xt",plots=TRUE
) 
 
=================================================== ================ 
       Median and CI estimation of the model parame ters 
=================================================== ================ 
 
------------------------------------------ 
              Xt component 
------------------------------------------ 
----- Xt spatio-temporal parameters: 
                       Median Low CI High CI 
Xt[(-4.8,35.95),1]      -0.07  -0.28    0.12 
Xt[(-4.55,35.75),2546]  -0.62  -1.89    0.62 
 
---------- Autoregressive 1 (t-1) ---------- 
----- Ar parameters: 
        Median Low CI High CI 
avect    0.078     NA      NA 
a0vect   0.070     NA      NA 
a0L[1]   2.390   2.39    2.39 
a0L[2]   4.780   4.78    4.78 
a0L[3]   9.830   9.83    9.83 
sigma2A  0.010   0.00    0.05 
 
---- Spatial parameters: 
      lag1                lag2                lag3                
alpha "0[-0.02,0.03]"     "0[-0.02,0.03]"     "-0.0 1[-0.02,0.02]" 
beta  "0[-0.01,0.02]"     "-0.01[-0.03,0.01]" "0[-0 .02,0.03]"     
phi   "-0.01[-0.02,0.01]" "-0.01[-0.03,0.01]" "0[-0 .04,0.03]"     
theta "-0.01[-0.02,0.01]" "0[-0.03,0.03]"     "-0.0 1[-0.03,0.03]" 
      lag4                lag5                
alpha "0.01[-0.03,0.02]"  "0[-0.02,0.02]"     
beta  "-0.01[-0.03,0.02]" "-0.01[-0.04,0.01]" 
phi   "-0.02[-0.04,0.05]" "-0.02[-0.05,0.05]" 
theta "0[-0.03,0.04]"     "0[-0.04,0.03]"     
 
---- Subdiagonal parameters of H matrix: 
          lag1                lag2                l ag3                
east      "0.03[-0.03,0.08]"  "0.02[0,0.06]"      " 0.02[0,0.06]"      
west      "0.01[-0.03,0.08]"  "0.01[-0.01,0.07]"  " 0.02[-0.02,0.05]"  
north     "0.02[-0.01,0.06]"  "0.03[0,0.05]"      " 0.02[0,0.05]"      
south     "0.06[-0.02,0.1]"   "0.05[0,0.09]"      " 0.03[0.01,0.08]"   
southeast "0.04[-0.06,0.13]"  "0.01[-0.03,0.14]"  " 0.03[-0.04,0.1]"   
northwest "-0.01[-0.07,0.18]" "0.01[-0.04,0.14]"  " 0.02[-0.02,0.16]"  
southwest "0.02[-0.18,0.19]"  "0.03[-0.15,0.2]"   " 0.01[-0.1,0.17]"   
northeast "-0.01[-0.18,0.16]" "-0.01[-0.13,0.13]" " -0.01[-0.08,0.11]" 
          lag4                lag5                
east      "0.02[-0.01,0.06]"  "0.02[-0.01,0.06]"  
west      "0.02[-0.01,0.05]"  "0.03[-0.03,0.06]"  
north     "0.02[0,0.05]"      "0.02[0,0.05]"      
south     "0.04[0.01,0.08]"   "0.03[0.02,0.08]"   
southeast "0.04[-0.04,0.09]"  "0.04[0,0.08]"      
northwest "0.02[-0.03,0.17]"  "0.01[-0.08,0.16]"  
southwest "0.03[-0.11,0.13]"  "0.05[-0.13,0.12]"  
northeast "-0.03[-0.09,0.15]" "-0.04[-0.13,0.22]" 
… 
 



 

Figure 4.6: results graphical output for ����� median and 99% credibility interval estimation for the spatial point 

s=1 in the time t=1 and for the spatial point s=34 when t=2546 

results  has other attribute called ‘file’. It contains the name of a .tex file where all the 

output of results  (the summary and the plots) will be stored. 

Finally, in case we want the median estimated values of our MCMC parameters samples, we 

can use the function estimate . Moreover, we can decide the maximum number of digits the 

decimal numbers should have. In our case, we only save the MCMC samples of �����, then, the 

rest of the parameters values are -9999999. 

  



 R code and outputs:R code and outputs:R code and outputs:R code and outputs:    

>results(object=model,spatTemp=list(c(1,1),c(34,254 6)),inter=0.99,digits=2,
component="Xt",plots=TRUE,file="hirlamRep") 
> estim=estimation(model,digits=3) 
> estim 
 
-------------- Model definition ---------------- 
-- Seasonalities: 
   w1   w2 
 2920 1460 
-- Autoregressive temp. lags: 
    AR1 AR2 AR3 
lag   1   8  16 
-- Spatial lags: 
 east-weast north-south southeast-northwest southwe st-northeast 
          5           5                   5                   5 
 
--------- Values  of the Parameters ---------- 
---- Sigmas: 
  sigma2E  sigma2Y sigma2Mu sigma2A-1 sigma2A-8 sig ma2A-16 
 -9999999 -9999999 -9999999      0.01     0.008      0.009 
 
---- Mu component: 
 muvect mean mu0vect mean  mu0L[1]  mu0L[2]  mu0L[3 ] 
    -9999999     -9999999 -9999999 -9999999 -999999 9 
-- Spatial Mu parameters: 
          lag1     lag2     lag3     lag4     lag5 
alpha -9999999 -9999999 -9999999 -9999999 -9999999 
beta  -9999999 -9999999 -9999999 -9999999 -9999999 
phi   -9999999 -9999999 -9999999 -9999999 -9999999 
theta -9999999 -9999999 -9999999 -9999999 -9999999 
 
---- Mt component: 
-- Seasonal w1 = 2920: 
 fvect mean   f0L[1]   f0L[2]   f0L[3] gvect mean   g0L[1]   g0L[2]   
g0L[3] 
   -9999999 -9999999 -9999999 -9999999   -9999999 - 9999999 -9999999 -
9999999 
-- Seasonal w2 = 1460: 
 fvect mean   f0L[1]   f0L[2]   f0L[3] gvect mean   g0L[1]   g0L[2]   
g0L[3] 
   -9999999 -9999999 -9999999 -9999999   -9999999 - 9999999 -9999999 -
9999999 
 
---- Xt component: 
-- Autoregressive 1 (t-1) 
 avect mean a0vect mean a0L[1] a0L[2] a0L[3] 
 0.07692857  0.07162857  4.249 -0.212 -0.104 
-- Spatial avect parameters: 
       lag1   lag2   lag3   lag4   lag5 
alpha 0.008 -0.008 -0.001  0.001 -0.004 
beta  0.011 -0.004  0.002 -0.013  0.006 
phi   0.007 -0.003  0.001 -0.015  0.012 
theta 0.009  0.003  0.014 -0.012  0.027 
-- Space-time parameters: 
            lag1   lag2   lag3   lag4   lag5 
east       0.005  0.000 -0.003 -0.001  0.004 
west      -0.009 -0.006 -0.003  0.000  0.009 
north     -0.006  0.005 -0.003 -0.004  0.002 
south      0.038  0.030  0.024  0.030  0.025 
southeast  0.022  0.005  0.022  0.024  0.024 
northwest -0.025 -0.004 -0.011 -0.002 -0.013 
southwest  0.007  0.020 -0.016  0.014  0.037 
northeast -0.018 -0.020 -0.044 -0.037 -0.042 
 



 

 

 

 

 

 

-- Autoregressive 2 (t-8) 
    avect mean a0vect mean a0L[1] a0L[2] a0L[3] 
 -0.0006428571 0.005142857  4.249 -0.212 -0.104 
-- Spatial avect parameters: 
       lag1   lag2   lag3   lag4   lag5 
alpha 0.008 -0.008 -0.001  0.001 -0.004 
beta  0.011 -0.004  0.002 -0.013  0.006 
phi   0.007 -0.003  0.001 -0.015  0.012 
theta 0.009  0.003  0.014 -0.012  0.027 
-- Space-time parameters: 
            lag1   lag2   lag3   lag4   lag5 
east       0.005  0.000 -0.003 -0.001  0.004 
west      -0.009 -0.006 -0.003  0.000  0.009 
north     -0.006  0.005 -0.003 -0.004  0.002 
south      0.038  0.030  0.024  0.030  0.025 
southeast  0.022  0.005  0.022  0.024  0.024 
northwest -0.025 -0.004 -0.011 -0.002 -0.013 
southwest  0.007  0.020 -0.016  0.014  0.037 
northeast -0.018 -0.020 -0.044 -0.037 -0.042 
 
-- Autoregressive 3 (t-16) 
 avect mean a0vect mean a0L[1] a0L[2] a0L[3] 
 0.01341429  0.02097143  4.249 -0.212 -0.104 
-- Spatial avect parameters: 
       lag1   lag2   lag3   lag4   lag5 
alpha 0.008 -0.008 -0.001  0.001 -0.004 
beta  0.011 -0.004  0.002 -0.013  0.006 
phi   0.007 -0.003  0.001 -0.015  0.012 
theta 0.009  0.003  0.014 -0.012  0.027 
-- Space-time parameters: 
            lag1   lag2   lag3   lag4   lag5 
east       0.005  0.000 -0.003 -0.001  0.004 
west      -0.009 -0.006 -0.003  0.000  0.009 
north     -0.006  0.005 -0.003 -0.004  0.002 
south      0.038  0.030  0.024  0.030  0.025 
southeast  0.022  0.005  0.022  0.024  0.024 
northwest -0.025 -0.004 -0.011 -0.002 -0.013 
southwest  0.007  0.020 -0.016  0.014  0.037 
northeast -0.018 -0.020 -0.044 -0.037 -0.042 


