
A User’s Guide to the R Package “PBSddesolve”
Version 1.12.1 – April 18, 2016

Jon T. Schnute, Alex Couture-Beil, and Rowan Haigh

1. Introduction

 The R package PBSddesolve generates numerical solutions for systems of delay
differential equations (DDEs) and ordinary differential equations (ODEs). The numerical
routines come from Simon Wood’s program solve95, originally written in C for the Microsoft
Windows operating systems. With PBSddesolve, a user can write the gradient code for a system
of DDEs or ODEs in the R language, rather than C. The code will then run on all platforms
supported by R, and the results can be inspected using R’s extensive graphics capabilities. Simon
has very generously given us permission to publish PBSddesolve (including his embedded
routines) under the GNU GENERAL PUBLIC LICENSE Version 2 or greater.

 For more information about Simon, see his work in the United Kingdom at the University
of Bath and the University of Bristol. In 2006, Simon published a book about Generalized
Additive Models (GAMs; Wood 2006) with two supporting R libraries gamair and mgcv, both
available on the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/). The first
example in his book presents data from the Hubble Space Telescope and an analysis from
Hubble’s law that suggests the universe is about 13 billion years old. If this example piques your
interest, install gamair from CRAN, and run the R code:

require(gamair)
data(hubble)
plot(hubble)

to see the distance x and velocity y relative to the earth for each of 24 galaxies. The relationship
y x determines Hubble’s constant 1/ A  , where A is the age of the universe. See Simon’s
book for further details about this interesting estimation problem.

 We originally noticed the solv95 program in the context of a Python implementation
called PyDDE by Ben Cairns at the School of Biological Sciences, University of Bristol (UK).
Ben now works at the University of Oxford as a statistical epidemiologist in the Cancer
Epidemiology Unit. We have designed PBSddesolve from solv95 to perform similarly to the
earlier R package odesolve (now called deSolve), written by R. Woodrow Setzer with Fortran
algorithms (notably lsoda) by Linda Petzold and Alan Hindmarsh at the Lawrence Livermore
National Laboratory in Livermore, California.

 The history of PBSddesolve illustrates the advantages of open source software. Jon
(author JTS above) wanted to use R to solve delay differential equations. He knew about another
implementation in the commercial package Matlab® (http://www.mathworks.com/), based on the
function dde23 (Shampine and Thomson 2000). Our programming wizard Alex (author ACB)
looked at the code and thought it might be tricky to implement in R, partly because dde23 was

http://www.bath.ac.uk/math-sci/contacts/academics/simon-wood
http://www.bath.ac.uk/math-sci/contacts/academics/simon-wood
http://www.maths.bris.ac.uk/~sw15190/
http://www.amazon.com/Generalized-Additive-Models-Introduction-Statistical/dp/1584884746
http://www.amazon.com/Generalized-Additive-Models-Introduction-Statistical/dp/1584884746
https://cran.r-project.org/web/packages/gamair/index.html
https://cran.r-project.org/web/packages/mgcv/index.html
http://cran.r-project.org/
http://users.ox.ac.uk/~clme1073/python/PyDDE/
http://users.ox.ac.uk/~clme1073/index.shtml
http://www.mathworks.com/

 – 2 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

in Fortran and we knew more about the interface between R and C. Then Alex discovered PyDDE
and solv95, and he obtained Simon’s permission (and encouragement) to implement it in R.
Based on his experience with another package PBSmodelling (Schnute et al. 2006), Alex
quickly altered calls in the solv95 C code to get values of the gradient from an R function.
When Ben tried our initial R package, he liked it, but he wanted to obtain solutions at specified
times, rather than the slightly irregular times generated by Simon’s code. So Ben changed the C
source code, using Simon’s interpolation algorithms to get interpolated values at definite times.
As a final touch, Alex implemented another feature of Simon’s code called “switches”, discussed
below.

 The demos included with PBSddesolve require PBSmodelling version 2.65 or later.
Although the numerical routines in PBSddesolve work without this extra package,
PBSmodelling adds user interfaces that make it easier to experience and understand the
operation of PBSddesolve. PBSddesolve originally appeared on CRAN under the name
ddesolve. That version is no longer supported. The current name emphasizes a close association
with other packages developed at the Pacific Biological Station (PBS) in Nanaimo, British
Columbia.

2. Defining DDEs

 To define a system of DDEs, a user must supply an R function that calculates the gradient
of each variable in the system with respect to time. This gradient function must have one of the
following two forms:

gradfunc(t,y) or gradfunc(t,y,parms)

where t = the current time of integration;
 y = a vector of estimated state values at time t;
 parms = an optional R object (such as a vector, list, or data frame) of additional

 input parameters for the DDE system.

The length n of the vector y 1(, ,)ny y corresponds to the number of states in the system,

where 1n  .

 The function gradfunc must calculate the derivative /idy dt for each variable iy

(1,i n) and return the derivative values in one of the following two formats:

a vector of n derivatives /idy dt , or

a list in which the first element comprises a vector of n derivatives, and the second element
comprises a numeric vector with additional values (of interest to the user) calculated within
gradfunc at time t.
Consistent with the idea of delay differential equations, gradfunc can also depend on state
values and their derivatives at times prior to the current time t. These must be accessed with calls
to pastvalue() and pastgradient(). Both functions take a single argument, a time lagt in

the range 0 lagt t t  , where 0t is the starting time of integration and t is the current time. The

https://cran.r-project.org/web/packages/PBSmodelling/index.html

 – 3 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

functions return a numeric vector of length n, where pastvalue(tlag) and
pastgradient(tlag) have the components lag()iy t and lag() /idy t dt , respectively, for

1, ,i n . Usually, lagt t k  is calculated as a fixed offset k back from the current time t; and a

typical call might have the form pastvalue(t-k). The calculation of gradfunc can involve
numerous past values and gradients at various different time lags.

 Wood (1999) also introduced the concept of switches that allow the DDE system to
produce discontinuous changes in the state vector y. To implement k switches (i.e., k conditions
in which the state vector can be discontinuous) with 1k  , a user needs to define two functions:

switchfunc(t,y) or switchfunc(t,y,parms), which returns a numeric vector of length
k; and

mapfunc(t,y,sid) or mapfunc(t,y,sid,parms), which depends on a switch id number
(1 sid k) and returns a numeric vector of length n.

These functions specify, respectively, the circumstances that trigger a switch and the behaviour
of the system when a switch occurs. Think of switchfunc defined by a vector of k functions

(,)js t y with 1, ,j k . Switch j takes place when js vanishes due to a change from positive to

negative values (mathematically 0js  and / 0js t   , where the symbol  denotes partial

differentiation). At a time t when switch j is triggered, dde automatically calls mapfunc with
sid = j. Our “ice cream” demo in Section 4 below illustrates the process of writing code that
includes switches.

3. Solving DDEs

 Simon Wood’s (1999) numerical routines produce the core functionality of
PBSddesolve. The function

dde(y, times, func, parms=NULL, switchfunc=NULL, mapfunc=NULL,
tol=1e-08, dt=0.1, hbsize=10000)

invokes the C routines used to numerically solve systems of DDEs, where

y = a vector of initial values for the states (this also determines n);
times = a numeric vector of explicit times at which the solution should be obtained;
func = a gradient function written to the specifications of gradfunc in Section 2;
parms = an optional vector of parameters to pass to func;
switchfunc = an optional function that determines conditions when the DDE system

experiences switches, as describe in Section 2;
mapfunc = an optional function associated with switchfunc that describes how the

DDE system changes (possibly discontinuously) at switch times;
tol = a scalar that sets the maximum error tolerated in the solution;
dt = the maximum initial time step used in constructing the numerical solution;
hbsize = history buffer size required for retaining lagged state variable values;

 – 4 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

For consistency with the package deSolve, the argument name func corresponds to the system
gradient function.

The return value of dde depends on the output format of the gradient, i.e., options (1) or
(2) for the output of gradfunc in Section 2. With format (1), dde returns a data frame with

1n columns and default column names t, y1, y2, ..., yn. The first column represents the times
at which the solution is reported (times , plus any additional times specified by switchfunc)
and the remaining n columns contain the components of y estimated at these times. The default
column names for these n columns are overridden by names(y) if the initial vector y has a
names attribute. If gradfunc has format (2), then the data frame returned by dde is extend by
an additional m columns, where m is the length of the vector of additional values reported by
gradfunc. By default, these have column names extra1, extra2, ..., extram. The names can
be overridden by assigning a names attribute to the vector of additional information returned by
gradfunc, i.e., the second component of the list output from gradfunc.

 In summary, an application of PBSddesolve can include three user-defined functions:

 myGrad(t,y) or myGrad(t,y,parms),

 mySwitch(t,y) or mySwitch(t,y,parms),

 myMap(t,y,sid) or myMap(t,y,sid,parms),

as well as a call to dde:

 dde(y, times, func=myGrad, parms, switchfunc=mySwitch,
mapfunc=myMap, tol=1e-08, dt=0.1, hbsize=10000)

The gradient function must be defined, but the switch and map functions are optional (either both
or neither). Similarly, the code may or may not involve an R object parms of parameters kept
constant during the integration. The gradient function can call the predefined functions
pastvalue(tlag) and pastgradient(tlag) to obtain lagged values of the state variables
and their derivatives.

Remember that the gradient, switch, and map functions are called internally by dde;
consequently, the argument list must precisely correspond to one of the prototypes listed at the
start of the previous paragraph. Values of the arguments, t, y, sid, and parms will be set by
dde when these functions are called. By default, parms=NULL, so that the user’s functions
should not depend on parms unless a value of parms is explicitly specified in the call to dde.
Typically, parms might be a vector or list with named components.

 – 5 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

4. Demos

 The PBSddesolve package currently includes four demos that illustrate simple
applications. As mentioned in Section 1, these require the R package PBSmodelling
(version 2.65 or later) to create graphical user interfaces (GUIs) that aid model testing and
exploration. Once PBSmodelling is installed and loaded with require(PBSmodelling), call
the function runDemos(), select PBSddesolve, and then choose one of the available demos.
Alternatively, run R’s native demo() function in lieu of runDemos().

4.1. Cooling - Newton’s Law of Cooling (ODE Example)

Figure 1. Newton’s Law of Cooling demonstration.

 This demo illustrates how to set up and solve a single ODE with PBSddesolve.
For historical background, see
http://en.wikipedia.org/wiki/Heat_conduction#Newton.27s_law_of_cooling.
Imagine a hot cup of coffee that cools toward room temperature, where a constant  determines
the rate of cooling. Newton’s Law of Cooling suggests a simple differential equation to
determine the coffee temperature ()y t at time t:

 env

dy
y T

dt
   ,

where envT is the ambient room temperature. If cup(0)y T denotes the initial temperature of the

coffee, then this equation has the analytical solution

 env cup env() ty t T T T e    ,

where cup()y t T when 0t  and env()y t T as t  . The GUI in Figure 1 displays the code

when you press the “R Code” button, as long as R-files (*.r) are associated with a suitable text

http://en.wikipedia.org/wiki/Heat_conduction#Newton.27s_law_of_cooling

 – 6 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

editor on your system. Similarly, “Docs” displays documentation and “Window” displays the
script used to produce the GUI. In this example, two key lines of the code are:

myGrad <- function(t, y) {return(-rho*(y[1]-Tenv)}
dde(y=Tcup, func=myGrad, times=seq(t0,t1,length=100), hbsize=0)

The parameters rho, Tenv, Tcup, t0 (the start time), and t1 (the end time) come from the GUI.
This ordinary differential equation does not need a history buffer, so hbsize=0.

4.2 Blowflies – (DDE Example)

0 50 100 150 200 250 300

0
1
0
0
0

2
0
0
0

3
0
0
0

Adult Blowfly Population

Time

P
o

p
u

la
ti
o

n
 (

y
)

0 50 100 150 200 250 300

-6
0
0

-4
0
0

-2
0
0

0
2
0
0

4
0
0

6
0
0

Rate of Change of Adult Population

Time

d
e

lt
a

 P
o

p
u

la
ti
o

n
 (

d
y
)

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

exp(-theta*ylag[1] / A0)

Time

e
x
p

 v
a

lu
e

Figure 2. Nicholson’s blowflies model demonstration (included in Simon Wood’s Solv95 User

Manual as an example of solving a DDE).

 As an example with a delay, Wood (1999) suggested a blowfly population model for
adults ()A t at time t:

0

0
() /

0

() , ;

() () , ;A t A

A t t tdA

PA t e A t t tdt  

 
   

  
     

,

0 0()A t A .

 – 7 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

Here  is the development time from egg to adult, P is the net production rate determined by
adult fecundity and egg survival to adulthood,  is a parameter determining how quickly
fecundity declines with an increasing adult population,  is the adult death rate, and 0t is the

initial time when ()A t starts with the value 0A . We assume that () 0A t  for 0t t . In our

formulation, the differential equation also includes the parameter 0A , so that  becomes

dimensionless. Essentially, 0A sets the scale for ()A t .

The GUI in Figure 2 allows the four parameters (, , ,P  ) to be adjusted, along with the

initial conditions 0 0(,)t A and the final time 1t . The graph at the left shows three panels: ()A t ,

() /dA t dt , and 0() /A t Ae    . In this case, a key portion of the R code is:

myGrad <- function(t, y) {
 if (t-t0 >= tau) ylag <- pastvalue(t-tau)
 else ylag <- 0
 yexp <- exp(-theta*ylag[1]/A0)-delta*y[1]
 yp <- P*ylag[1]*yexp
 return(list(yp, c(dy=yp, exp=yexp))) }

where values of tau, P, theta, delta, t0, and A0 come from the GUI.

 – 8 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

4.3 Lorenz – (ODE Example)

Figure 3. The Lorenz model demonstrates chaotic behaviour in the solution of thee linked

differential equations.

 The Lorenz model (http://planetmath.org/encyclopedia/LorenzEquation.html) consists of
three ordinary differential equations for a three-dimensional state vector y:

1
2 1()

dy
y y

dt
  ,

2
1 3 2()

dy
y y y

dt
   ,

3
1 2 3

dy
y y y

dt
  ,

with three parameters (, ,)   . This demonstration includes a GUI for adjusting the parameters
and initial conditions to see results from integrating the Lorenz model. It also allows the solution
to be obtained with either PBSddesolve or deSolve. The choice of numerical solver should not
affect the results of the plot, even though these two packages use different underlying algorithms
for estimating the solution. Tests (not shown here) indicate that both solvers return comparable
results, a result that gives us some confidence that PBSddesolve performs correctly.

http://planetmath.org/encyclopedia/LorenzEquation.html

 – 9 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

4.4 Ice Cream Parlor – Raiders of the Lost Cone (Switches)

0 20 40 60 80 100

7
8

9
1

0
1

1
1

2
1

3

DDE with two switches

days
ic

e
 c

re
a

m

0 20 40 60 80 100

-1
.0

-0
.5

0
.0

0
.5

1
.0

Switch function and corresponding map function call

days

y

Figure 4. The ice cream parlor receives deliveries (switch 1, green) and experiences theft

(switch 2, red).

 To illustrate switches, Alex (author ACB) suggested an ice cream parlor that gets
restocked periodically. But Jon (author JTS) wanted at least two switches, so he suggested that
thieves might occasionally raid the parlor and steal some of the stock. Comments in Alex’s code
soon suggested a snappy title: Raiders of the Lost Cone. Rowan (author RH) and Alex quickly
agreed that the parlor should have a flashing sign with the logo “Papa Schnutio’s” that puts an
Italian twist on Jon’s Germanic last name. Jon hesitated, but he once lived in Italy for a year and
couldn’t resist the idea of Italian ice cream (gelato). So he agreed to an establishment named

 Papa Schnutio’s Gelatteria

 – 10 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

Our model assumes an exponential depletion of the ice cream stock ()y t with rate r:

dy
ry

dt
  ,

perhaps because a lower stock would offer fewer choices and thus discourage consumption.
(Sometimes a gelatteria just doesn’t have that perfect flavour you came for. It was there
yesterday, but not today – a great disappointment!) We need two switch functions that we chose
to be the sinusoids

sin 2i i
i

t
s a

p


  
   

  

with offset parameters ia and periods ip for 1,2i  . Switch 1 triggers restocking

() ()y t y t Y  

and switch 2 triggers theft events

() (1) ()y t f y t   ,

where ()y t denotes the value of y after the switch, Y is the fixed amount of ice cream added to

the stock, and f is the fraction of the stock removed by thieves.

 In this example, key features of the code involve the sine wave used for switching

sinWave <- function(t,aa,pp) { sin(2*pi*(aa + (t/pp))) }

the switch function

mySwitch <- function(t,y) {
 c(sinWave(t,a[1],p[1]), sinWave(t,a[2],p[2])) }

the map function

myMap <- function(t,y,swID) {
 if (swID==1) y <- y + Y else y <- (1-f)*y }

the gradient function

myGrad <- function(t,y) { -r*y }

and the call to the main routine

yout <- dde(y=y0, times=tt, func=myGrad,
 switchfunc=mySwitch, mapfunc=myMap)

where the initial stock y0, the desired output times tt, the consumption rate r, the amount Y
brought by the supplier, the theft fraction f, the offset vector a (of length 2), and the period
vector p (of length 2) correspond to values prescribed by the GUI.

 – 11 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

4.5 Fish Population with a Fishery and a Reserve

 Our motivation to produce PBSddesolve came primarily from biological models of fish
populations that experience recruitment from larval production at an earlier time. (The blowflies
example in Section 4.2 illustrates similar behaviour.) The package PBSmodelling includes a
much more elaborate example (with complete documentation) in which a reserve from fishing
protects a portion of the fish population. The model appears in two versions, with discrete and
continuous time t. This example requires at least versions 2.65 and 1.10 of PBSmodelling and
deSolve, respectively. After these two packages have been installed, type the following
commands in the R console:

require(PBSmodelling)
runExamples()

In the GUI to “Choose an Example”, press the radio button for the simulation “FishRes”.
View the manual by pressing the “Docs” button, as in the examples discussed above in
Sections 4.1-4.4.

5. The Algorithm

 The R package PBSddesolve provides an interface to Simon Wood’s numerical routines
found in solv95. The algorithm implemented in this package is the same as that in solv95,
and is described by Wood (1999) in his user manual:

“The method used for integration is an embedded RK2(3) scheme due to Fehlberg, and
reported on page 170 of Hairer et al. (1987). Lagged variables (and gradients) are stored
in a ring buffer at each step of the integrator. Interpolation is required to estimate values
of the lagged variables between storage times. For numerical probity it is essential that
the interpolation of lagged variables is of a higher order of approximation than the
integrator, otherwise the assumptions underlying the error estimate from the RK pair will
not be met. The algorithm used in Solv95 uses cubic hermite interpolation (e.g. Burden
and Faires 1987) to achieve this (which is the reason that gradients need to be stored
along with lagged values). The consequences of not using consistent interpolation and
integration schemes are vividly illustrated in Highman (1993). Paul (1992) was also
influential in the design of the method used here, and the step size selection is straight
out of Press et al. (1992) (method, not code!). The RK2(3) pair used is not actually
optimal - it should be possible to derive an improved scheme - see Butcher (1987) for an
explanation of how to go about it.”

 The original solv95 software requires a user to write C code for a system of DDEs. This
must be compiled and linked with solv95; then the resulting executable file gives a numerical
solution. With PBSddesolve, a user codes the model in R, rather than C. A compiled version of
the integration algorithm automatically comes with the package, which makes the numerical C
routines compatible with R. Because the output appears as an object in R, a user can interpret the
results using R’s extensive capabilities for analysis and graphics.

 – 12 –

PBSddesolve 1.12.1 Last modified: April 18, 2016

 The numerical routines have been preserved in the files ddeq.c and ddeq.h. The
interface to dde() has been significantly altered and now appears in the file PBSddesolve.c,
which replaces solv95.c. The link between R and C is contained in r_model.c, adapted from
a basic model template in the original solv95 code bundle. This file now has many calls to the
R application programming interface (API).

6. References

Burden, R.L., and Faires, J.D. (1985) Numerical Analysis. Pridle Weber and Schmidt, Boston.

Butcher, J.C. (1987) The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta
and General Linear Methods. John Wiley & Sons, Inc. 528 pp.

Hairer, E., Norsett, S.P., and Wanner, G. (1987) Solving Ordinary Differential Equations I.
Springer-Verlag Berlin. 170 pp. RKF2(3)B.

Higman, D.J. (1993) Error control for initial value problems with discontinuities and delays.
Applied Numerical Mathematics 12(4): 315-330.

Paul, C.A.H. (1992) Developing a delay differential equation solver. Applied Numerical
Mathematics 9: 403-414.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992) Numerical Recipes in
C : The Art of Scientific Computing. Cambridge University Press.

Schnute, J.T., Couture-Beil, A., and Haigh, R. (2006) PBS Modelling 1: user’s guide. Canadian
Technical Report of Fisheries and Aquatic Sciences 2674: viii + 112 pp.

Shampine, L.F., and Thompson, S. (2000) Solving delay differential equations with dde23.

Wood, S.N. (1999) Solv95: a numerical solver for systems of delay differential equations with
switches. Saint Andrews, UK. 10 pp. URL: Simon N. Wood
(See solv95-Manual.pdf in the root library directory for PBSddesolve.)

Wood, S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC. 416 pp.

Appendix A. R Documentation for PBSddesolve

 This appendix documents the objects (functions) available in PBSddesolve. Subsequent
pages give indexed technical documentation for every object generated from *.Rd files written
for the R documentation system.

http://cran.r-project.org/web/packages/PBSmodelling/index.html
http://www.radford.edu/~thompson/webddes/tutorial.html
http://www.maths.bris.ac.uk/~sw15190/

R documentation

of all in ‘PBSddesolve’

April 18, 2016

R topics documented:

dde . 13

pastvalue . 15

PBSddesolve . 15

Index 17

dde Solve Delay Differential Equations

Description

A solver for systems of delay differential equations based on numerical routines from Simon Wood’s solv95

program. This solver is also capable of solving systems of ordinary differential equations.

Please see the included demos for examples of how to use dde.

To view available demos run demo(package="PBSddesolve").

The supplied demos require that the R package PBSmodelling be installed.

Usage

dde(y, times, func, parms=NULL, switchfunc=NULL, mapfunc=NULL,

tol=1e-08, dt=0.1, hbsize=10000)

Arguments

y Vector of initial values of the DDE system. The size of the supplied vector determines the

number of variables in the system.

times Numeric vector of specific times to solve.

func A user supplied function that computes the gradients in the DDE system at time t. The function

must be defined using the arguments: (t,y) or (t,y,parms), where t is the current time in

the integration, y is a vector of the current estimated variables of the DDE system, and parms

is any R object representing additional parameters (optional).

The argument func must return one of the two following return types:

1) a vector containing the calculated gradients for each variable; or

2) a list with two elements - the first a vector of calculated gradients, the second a vector

(possibly named) of values for a variable specified by the user at each point in the integration.

13

14 dde

parms Any constant parameters to pass to func, switchfunc, and mapfunc.

switchfunc An optional function that is used to manipulate state values at given times. The switch function

takes the arguments (t,y) or (t,y,parms) and must return a numeric vector. The size of the

vector determines the number of switches used by the model. As values of switchfunc pass

through zero (from positive to negative), a corresponding call to mapfunc is made, which can

then modify any state value.

mapfunc If switchfunc is defined, then a map function must also be supplied with arguments (t, y, switch_id)

or t, y, switch_id, parms), where t is the time, y are the current state values, switch_id

is the index of the triggered switch, and parms are additional constant parameters.

tol Maximum error tolerated at each time step (as a proportion of the state variable concerned).

dt Maximum initial time step.

hbsize History buffer size required for solving DDEs.

Details

The user supplied function func can access past values (lags) of y by calling the pastvalue function. Past

gradients are accessible by the pastgradient function. These functions can only be called from func and can

only be passed values of t greater or equal to the start time, but less than the current time of the integration point.

For example, calling pastvalue(t) is not allowed, since these values are the current values which are passed in

as y.

Value

A data frame with one column for t, a column for every variable in the system, and a column for every additional

value that may (or may not) have been returned by func in the second element of the list.

If the initial y values parameter was named, then the solved values column will use the same names. Otherwise

y1, y2, ... will be used.

If func returned a list, with a named vector as the second element, then those names will be used as the column

names. If the vector was not named, then extra1, extra2, ... will be used.

See Also

pastvalue

Examples

##

This is just a single example of using dde.

For more examples see demo(package="PBSddesolve")

the demos require the package PBSmodelling

##

require(PBSddesolve)

local(env=.PBSddeEnv, expr={

#create a func to return dde gradient

yprime <- function(t,y,parms) {

if (t < parms$tau)

lag <- parms$initial

else

lag <- pastvalue(t - parms$tau)

y1 <- parms$a * y[1] - (y[1]^3/3) + parms$m * (lag[1] - y[1])

y2 <- y[1] - y[2]

return(c(y1,y2))

}

pastvalue 15

#define initial values and parameters

yinit <- c(1,1)

parms <- list(tau=3, a=2, m=-10, initial=yinit)

solve the dde system

yout <- dde(y=yinit,times=seq(0,30,0.1),func=yprime,parms=parms)

and display the results

plot(yout$time, yout$y1, type="l", col="red", xlab="t", ylab="y",

ylim=c(min(yout$y1, yout$y2), max(yout$y1, yout$y2)))

lines(yout$time, yout$y2, col="blue")

legend("topleft", legend = c("y1", "y2"),lwd=2, lty = 1,

xjust = 1, yjust = 1, col = c("red","blue"))

})

pastvalue Retrieve Past Values (lags) During Gradient Calculation

Description

These routines provides access to variable history at lagged times. The lagged time t must not be less than t0, nor

should it be greater than the current time of gradient calculation. The routine cannot be directly called by a user,

and will only work during the integration process as triggered by the dde routine.

Usage

pastvalue(t)

pastgradient(t)

Arguments

t Access history at time t.

Value

Vector of variable history at time t.

See Also

dde

PBSddesolve Package: Solver for Delay Differential Equations

Description

A solver for systems of delay differential equations based on numerical routines from Simon Wood’s solv95

program. This solver is also capable of solving systems of ordinary differential equations.

Details

Please see the user guide PBSddesolve-UG.pdf, located in R’s library directory ./library/PBSddesolve/doc,

for a comprehensive overview.

16 PBSddesolve

Author(s)

Alex Couture-Beil <alex@mofo.ca>

Jon T. Schnute <schnutej-dfo@shaw.ca>

Rowan Haigh <rowan.haigh@dfo-mpo.gc.ca>

Maintainer: Rowan Haigh <rowan.haigh@dfo-mpo.gc.ca>

References

Wood, S.N. (1999) Solv95: a numerical solver for systems of delay differential equations with switches. Saint

Andrews, UK. 10 pp.

See Also

dde

Index

∗Topic math
dde, 13

pastvalue, 15

∗Topic package
PBSddesolve, 15

dde, 13, 15, 16

pastgradient, 14

pastgradient (pastvalue), 15

pastvalue, 14, 15

PBSddesolve, 15

PBSddesolve-package (PBSddesolve), 15

17

	1. Introduction
	2. Defining DDEs
	3. Solving DDEs
	4. Demos
	4.1. Cooling - Newton’s Law of Cooling (ODE Example)
	4.2 Blowflies – (DDE Example)
	4.3 Lorenz – (ODE Example)
	4.4 Ice Cream Parlor – Raiders of the Lost Cone (Switches)
	4.5 Fish Population with a Fishery and a Reserve

	5. The Algorithm
	6. References
	Appendix A. R Documentation for PBSddesolve
	dde
	pastvalue
	PBSddesolve
	Index

