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The FDLyapu package is an extention of the GPoM package!.

Its aim is to assess the spectrum of the Lyapunov exponents for dynamical systems of polynomial form. The
fractal dimension can also be deduced from this spectrum. The algorithms available in the package are based
on the algebraic formulation of the equations. The GPoM package, which enables the numerical formulation of
algebraic equations in a polynomial form, is thus directly required for this purpose. A user-friendly interface
is also provided with FDLyapu, although the codes can be used in a blind mode. The connexion with GPoM is
very natural here since this package aims to obtain Ordinary Differential Equations (ODE) from observational
time series. The present package can thus be applied afterwards to characterize the global models obtained
with GPoM but also to any dynamical system of ODEs expressed in polynomial form.

Algorithms

The Lyapunov exponents quantify the rate of separation of infinitesimally close trajectories. Depending on
the initial conditions, this rate can be positive (divergence) or negative (convergence). A n-dimensionnal
system is characterized by n characteristic Lyapunov exponents. For continuous dynamical systems, one
Lyapunov exponent must correspond to the direction of the flow and should thus equal zero in average. To
estimate the Lyapunov exponents spectrum, two algorithms are made available to the user, both based on the
formal derivation of the Jacobian matrix (derivation is actually semi-formal only since the numeric coefficients
are used in the derivation process).

o Method 1 (Wolf)

The first algorithm made available in the package was introduced by Wolf et al. in 1985.2 It is based
on a Gram-Schmidt method. The algebraic formulation of the model from which the Jacobian matrix is
derived is required. Considering a set of initial conditions, an ensemble of n infinitesimal perturbations is
generated (one for each direction of the phase space) and the Jacobian matrix is used to estimate locally the
divergence/convergence of the flow (an eigenvalue decomposition is used to distinguish the directions of the
flow). Note that, in its principle, this formulation does not enable the distinction of the eigenvalue related to
the direction of the flow from the other eigenvalues.

This estimation is repeated all along the flow in order to have a large ensemble of estimates. If this ensemble
is large enough, the averaged values of the assessed coefficients can be considered as statistically significant
for a robust estimate of the global Lyapunov exponents spectrum. Based on this algorithm, the Lyapunov
exponents are organised from the largest to the smallest one, but it is not always easy to distinguish which
exponent best belongs to the flow direction.

r Method 2 (Grond)

Thttps://CRAN.R-project.org/package=GPoM
2A. Wolf, J. B. Swift, H. L. Swinney, & J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16,
285-317, 1985.



The second algorithm was introduced by Grond et al. in 2003.2 % It is based on the same principles as
method 1, except that, before applying the Gram-Schmidt method, a projection is first applied along the flow
direction in order to clearly distinguish this direction from the others, enabling also a more robust estimation
of all the Lyapunov exponents. One particular interest of the method is to obtain locally valid estimates of
the Lyapunov exponents. Note that, due to this specific technique, the Lyapunov exponents spectrum is
always organised with the zero-exponent positioned in first place. The other exponents are then organised
independently from the largest to the smallest one.

1 The Kaplan-Yorke dimension Dyy

The Dgy dimension was introduced by Kaplan and Yorke in 1979.> This dimension is interesting here for
several reasons. First, it can be directly deduced from the Lyapunov spectrum (for this reason it is also called
the Lyapunov dimension). Second, the Dxy dimension was proven to be robust to global modelling® which
is an important objective of the GPoM package to which the present package is connected. Finally, although
mainly used in dimension three, its formulation is sufficiently general to be applied to higher dimensional
systems. For example, it was applied to characterize the four-dimensional Ebola attractor obtained with the
global modelling technique.”

Example

Numerical formulation of the dynamical system

To assess the Lyapunov exponents, the present approach requires the algebric formulation of the studied
dynamical system. To formulate the equations of a dynamical system, the FDLyapu package uses the

conventions defined in the GPoM package. Details about these conventions are explained further in the vignette

GPoM : I Conventions®.

The Rossler system?
de/dt = —y — 2z
dy/dt =z + ay
dz/dt =b+ z(x — ¢).

is taken here as a case study to examplify these conventions. For (a = 0.52,b = 2, ¢ = 4), this system has a
phase non-coherent chaotic behavior. Following the conventions defined in GPoM (see function poLabs, here
with nVar = 3 and dMax = 2), this system can be described by the matrix K as follows:

# parameters

a = 0.52
b =2
c =4

# equations
Eql <- ¢(0,-1, 0,-1, 0, 0, O, O, 0, 0)

3F. Grond, H.H. Diebner, S. Sahle, A. Mathias, S. Fischer & O.E. Réssler, A robust, locally interpretable algorithm for
Lyapunov exponents. Chaos, Solitons & Fractals, 16, 841-852, 2003.

4F. Grond & H.H. Diebner, Local Lyapunov exponents for dissipative continuous systems Chaos Solitons & Fractals, 23,
1809-1817, 2005.

5J. L. Kaplan & J. A. Yorke, Chaotic Behavior of Multidimensional Difference Equations, in Functional Differential Equations
and Approximations of Fixed Points, Lecture Notes in Mathematics, 730, edited by H.-O. Peitgen & H.-O. Walter, Springer,
Berlin, 1979.

6S. Mangiarotti, L. Drapeau & C. Letellier. Two chaotic global models for cereal crops cycles observed from satellite in
Northern Morocco. Chaos, 24, 023130, 2014.

7S. Mangiarotti, M. Peyre & M. Huc, A chaotic model for the epidemic of Ebola virus disease in West Africa (2013-2016),
Chaos, 26, 113112, 2016.

8https://cran.r-project.org/web/packages/ GPoM /vignettes/b1_ Conventions.pdf

90. E. Rossler, An Equation for Continuous Chaos, Physics Letters, 57 A(5), 397398, 1976.



Eq2 <- ¢(0, 0, 0, a, 0, 0, 1, 0, 0, O
Eq3 <- ¢(b,-c, 0, 0, 0, 0, 0, 1, 0, O
K = cbind(Eql, Eq2, Eq3)

)
)

Indeed, using the visuEq function, the equations are properly formed:

visuEq(nVar = 3, dMax = 2, K = K, substit = c("x", "y", "z"))
## dx/dt = -z -y

##

## dy/dt = 0.52 y + x
##

## dz/dt = 2 -4z + x z

(by default, the notation used in function visuEq is "X1", "X2" etc., the option susbtit enables here to
choose an alternate notation explicitely).

Compute the Lyapunov exponent spectrum

To run the algorithm, the following elements must be provided to the algorithm:

# The dynamical system equations (just defined by matriz K)
#

# The number of wariables (it can be deduced from matriz K)
nVar = dim(K) [2]

# The maxzimum polynomial degree of the formulation (also deduced from K)
pMax = dim(K) [1]

dMax = p2dMax(nVar, pMax)

# The initial conditions

inicond <- c(-0.04298734, 1.025536, 0.09057987)

# The integration time step

timeStep <- 0.01

# The initial and ending integration time

tDeb <- 0

tFin <- 10

The two algorithms can then be launched successively using the 1yapFDWolf and lyapFDGrond functions:

# Prepare the output file
outLyapFD <- NULL

# Method 1

outLyapFD$Wolf <- lyapFDWolf (outLyapFD$Wolf, nVar= nVar, dMax = dMax,
coeffF = K,
tDeb = tDeb, dt = timeStep, tFin = tFin,
yDeb = inicond)

# Method 2

outLyapFD$Grond <- lyapFDGrond(outLyapFD$Grond, nVar= nVar, dMax = dMax,
coeffF = K,

tDeb = tDeb, dt = timeStep, tFin = tFin,
yDeb = inicond)

The output of the two algorithms will be stored here in the list outLyapFD which description will be given in
the subsequent section.



Results

The Lyapunov exponents

The outputs of the two algorithms are organized in sublists as follows:

names (outLyapFD$Wolf)

## [1] Ilyll IIDII |Itll "lyapEXp" n lyapEXpLOC"
## [6] "SumLogNorm" "tDebInit" "stdExp" "meanExp" "Dky"
## [11] "DkyLoc" "stdDky" "meanDky" "methodName"

The trajectory in the phase space, along which the local Lyapunov exponents are computed, is stored in $y
(the corresponding time vector is in $t). The corresponding phase portrait can thus be plotted as follows:

plot (outLyapFD$Wolf$y[,1], outLyapFD$Wolf$y[,2], type ='1', xlab = 'x', ylab = 'y')

The Lyapunov exponents (locally estimated) are stored in $1yapExpLoc (at each iteration, the last estimate is
concatenated to the previous ones). The average is estimated at each iteration and concatenated in $1yapExp.
The last estimate of the Lyapunov exponents spectrum (that is, based on the whole length simulation) is kept
in $meanExp. Note that the organization differs between the two methods since the first value systematically
corresponds to the largest Lyapunov exponent with method 1, whereas it corresponds to the flow direction
with method 2:

# For method 1 (Wolf et al. 1985)
outLyapFD$Wolf $meanExp

## [,1] [,2] [,3]
## [1,] 0.1584324 0.01690274 -2.881165
#

# For method 2 (Grond et al. 2003)
outLyapFD$Grond$meanExp

## [,1] [,2] [,3]
## [1,] 0.0053202 0.1672354 -2.8784

The exponents may thus be reordered to have the Lyapunov spectrum in decreasing order (that is, when at
least one of the exponents is positive). The results of the two algorithms are very similar for both methods
once reordered: (0.1584;0.0169; —2.881) with method 1 and (0.1672;0.0053; —2.878) with method 2.

To have an idea of the robustness of the estimates, the dispersion of averaged values based on the last
iterations can be computed and stored in the sublist $stdExp:



# For method 1 (Wolf et al. 1985)
outLyapFD$Wolf$stdExp

#it [,1] [,2] [,3]
## [1,] 0.000265668 7.365932e-05 0.002546517
#

# For method 2 (Grond et al. 2003)
outLyapFD$Grond$stdExp

## [,1] [,2] [,3]
## [1,] 0.0001579498 0.0004809231 0.002542685

By default, this dispersion is computed on the last nIterStats = 50 iterations of the algorithm. However,
to have a proper estimate of the error, this number of iterations should be adapted carefully in order to
ensure a good representativity over the visited attractor. Indeed, following the evolution of the convergence
of the Lyapunov exponents, it is observed that their values will not converge monotonically, but will present
oscillations:

plotMeanExponents(nVar, outLyapFD$Wolf, nIterStats = 400, xlim = c(1,9999), legend=TRUE)
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If we focus on the 2000 last iterations of the largest exponent of the Réssler system (next figure), oscillations
remain clearly distinguishable. Their characteristic time relates to the pseudo-period of the Rossler system
(indeed, each oscillation through the attractor will generate an oscillation on the averaged value of the local
Lyapunov exponents that will also transfer to the global estimates).

plotMeanExponents(nVar, outLyapFD$Wolf, nIterStats = 1000, expList = c(TRUE, FALSE, FALSE), legend=TRUE
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To have an information about the robustness of the estimates, an error bar should also be estimated. This can
be done considering the dispersion of the estimated values. This dispersion is automatically assessed on the
nlterStats = 50 last iterations. However, nIterStats should be chosen carrefully according to the context.
When oscillations are easilly depicted visually, this parameter should correspond to an integer number of
oscillations around the attractor in the phase space, so that its value can be representative of a completed
number of loops. The interface provided with the package can be very useful to help fixing this algorithmic
parameter. Note that for phase-noncoherent chaotic regimes (which is the case for the parameterization of
the chosen example), oscillations may vary both in pseudo-period and amplitude. In the present case, for
nlterStats = 1000, more or less three oscilations are observed between iterations 9000 and 10000.

As discussed upper in the text, the method introduced by Grond et al. (2003) enables to distinguish the
direction of the flow from the other directions. Thanks to this, this method allows a finer estimate of the
whole Lyapunov spectrum by avoiding any confusion between this exponent from the other exponents, and
thus clearly distinguishing also positive from negative exponents.

As already mentioned upper in the text, the mean Lyapunov exponent corresponding to this special direction
should equal zero in average. However, it may oscillate - even along the flow direction - since the distance
between two points successively positioned along the same trajectory will also vary due to successive
accelerations and slowdowns. Despite these variations, the averaged value should be identical since these two
points will strictly follow the same trajectory.

plotMeanExponents(nVar, outLyapFD$Grond, nIterStats = 1000, expList = c(TRUE, TRUE, FALSE), legend=TRUE
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Considering this observation, the Lyapunov exponents spectrum should be closer to optimal when the direction
corresponding to the flow equals zero, since, under these conditions, one of the exponents will effectively have
the proper averaged value. Note that such a choice will not be applicable with method 1 since the direction
of the flow cannot be systematically distinguishable with this method. Here also, the interface made available
with the FDLyapu package may be very useful for a visual choice of the algorithm paramerization.

Based on the run presented in the previous plots, the following Lyapunov spectrum were obtained: (0.1584 +
3.107%;,0.016941.10~%; —2.8814:3.10~3) with method 1, and (0.167244.10~%;0.005342.10~%; —2.878+3.1073)
with method 2.

The Kaplan-Yorke dimension

Similarly, the Kaplan-Yorke dimension is also stored in the outputs. The local dimension is available in
$DkyLoc, the averaged values (reestimated at each iteration) are in $Dky. The last estimate of the dimension
is kept in $meanDky

# For method 1 (Wolf et al. 1985)
outLyapFD$Wolf $meanDky

#

# For method 2 (Grond et al. 2003)
outLyapFD$Grond$meanDky

with a standard deviation also kept in $stdDky:

# For method 1 (Wolf et al. 1985)
outLyapFD$Wolf$stdDky

#

# For method 2 (Grond et al. 2003)
outLyapFD$Grond$stdDky

Results of the two algorithms are thus similar: (2.0608 +2.10~%) with Wolf et al. (1985) and (2.0599 £2.10~%)



with Grond et al. (2003), but the difference between the two estimates is larger than the estimated standard
deviation (even at two o). The ability of the algorithm developped by Grond et al. to distinguish the flow
direction from the other direction makes it more reliable. Moreover, it enables to converge quicker. The
results obtained with the second method can thus be preferred here. A higher precision would be obtained by
considering a longer simulation length (tFin > 10).

The local Lyapunov exponents

One specific interest of the method 2 developped by Grond et al. (2003) comes from its local validity that
allows the analysis of local Lyapunov exponents along the trajectory. The local Lyapunov exponents are also
stored in the outputs, they can be plotted for analysis.

plotLocalExponents(nVar, outLyapFD$Grond, legend=TRUE)
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Their time evolution shows the complexity of their behavior.

Interface

An interface is provided with the package. It can be launched either directly running the corresponding ui.R
application from the Rstudio window (“Run App” button) or using the following command

shiny: :runApp('../inst/shiny-examples/FDLyapu-app')
Once launched, the equations of the studied system must be loaded using the interface (“Choose File”) from
where several examples are provided with the package:

o The Lorenz-1963 three-dimensional system (ex3D_Lorenz_1963.R),

o The hyperchaotic Rossler-1979 system (ex4D_Rossler_1979.R),

e The four-dimensional Ebola model obtained from observational data using the GPoM package by
Mangiarotti et al. in 2016 (ex4D_EbolaModel_2016.R),



o The five-dimensional hyperchaotic system introduced by Vaidyanathan et al. in 2015 (ex5D_Dynamo_2015.R),
« And the nine-dimensional hyperchaotic system introduced by Reiterer et al. in 1998 (ex9D_RayleighBenard_1998.R).
These can all be found in the following folder .\Examples provided with the package.

The interface is separated in five tabs: two tabs dedicated to computation (one for each method), two others
for the visualization of the local estimates in the phase space (one for each method also), and one more for
displaying the equations of the studied system. A detailed description of these tabs is provided hereafter.

o Tabs ‘Wolf’ and ‘Grond’

Among the algorithmic parameters, four ones are directly accessible from the interface: the integration
duration tFin, the time step dt, the plot refreshing frequency (an interface parameter not required to run
the algorithm), and the window width to be used for estimating the statistics nIterStats (other parameters
must be provided inside the loaded file). If these four parameters are provided with the loaded file, the
interface will take the corresponding values in the interactive input boxes when loading the file. If not, default
values will be used. It will remain possible to modify these values at any time, that is before and after having
started the computation process.'°

The ‘Start’ button must be clicked to start the computation (note that this function becomes accessible only
once an input file was loaded). The computation can be stopped using the ‘Stop’ button, it can also be
reinitialized with the ‘Reset’ button. Once stopped, the algorithm can be restarted using the ‘Start’ button.
After the computation has reached the end, the computation can be extented by updating the increasing
time and clicking again the ‘Start’ button.

Two plot windows are made avaible in the tab, either for the Lyapunov exponents spectrum, or for the
Kaplan-Yorke dimension. This choice can be done by choosing either ‘Lyapunov exponents’ or ‘Local Dky’ in
the control panel (radio button).

A figure of three plots will appear after a period of time. The time series of the local Lyapunov exponents is
presented on the first panel with one colour for each exponent. The legend can be obtained by ticking the
corresponding box on the upper part of the figure. It is also possible to select which exponents should or
should not be plotted on the Figure.

The mean Lyapunov exponents are reestimated at each iteration and stored. The obtained time series are
presented on the middle panel. These are expected to progressively converge to an optimal value.

To have an estimate of the precision of the mean Lyapunov exponents, the dispersion of the last estimates is
assessed based on the nIterStats last iterations. The number of iterations may be chosen in order to have
an integer number of completed cycles and thus a more representative sampling of the (expected) attractor.

For all the plots, the X and Y scales are automatically updated in order to provide with a continuous
monitoring of the algorithmic estimation. To have an expertise on specific parts of the plots, the automatic
axes can be desactivated and the focus chosen manually.

The last estimates are provided in ‘Statistics’ (bottom left), that is, successively: the vector of the mean
Lyapunov exponents, and the corresponding vector of standard deviation. Kindly remember that the
organisation of the organisation of the two vectors differs depending on what method is used:

o For method 1 (Wolf et al. 1985), the exponents are provided from the largest to the smallest value.

o For method 2 (Grond et al. 2003), the same organisation will be used except for the first exponent
which systematically corresponds to the flow direction (which should thus progressively converge to
zero with possible oscillations around it).

The number of iterations nIterStats, based on which the standard deviation is estimated, is also recalled
(see: Window min/max iterations).

10Note that any interaction performed through the interface while the computation is in process will be received at the next
update and the corresponding order and will then become active one more step later.



r Tabs ‘3DWolf’ and ‘3DGrond’ (Visualization in the phase space)

This tab aims to visualize the local Lyapunov exponents in three-dimensional projections of the phase space
(it can also be applied to the Kaplan-Yorke dimension). The rgl package is used for this purpose. To be
applied, it is necessary to define the three axes of the 3D projection (by default, these axes will correspond to
the three first system variables) and the exponents to be plotted (or the Dky dimension). Once displayed, the
projected phase space can be rotated and magnified with the mouse. The colour palette can also be chosen
manually in order to improve the readability of the figure.

The analysis can be applied to the results obtained with the two methods (one tab is made available for each).
It should be kept in mind when analysing the results that the organisation of the exponents differs in the two
cases: for method one, Lyapunov exponents are organized from the largest to the smallest value, whereas for
method two, the fist value systematically correspond to the direction of the flow.

r Tab ‘Equations’ (for displaying of the equations)

The equations of the studied system can be visualised in the last tab. This information is important for
whom would need to check what equations are analyzed by the algorithm.

Two options are provided. The first option aims to chose the variables names. The other one aims to define
the number of digits to be edited in addition to a minimum number of digits. Note that this option is purely
qualitative, its aim is just to make the equations structure more readable.

Application cases
The following results were obtained applying the algorithms to the examples upper mentioned.

The three-dimensional Lorenz (1963) system

The Lorenz system was introduced by Edouard N. Lorenz in 1963 '! by an extreme simplification of the
equations of convection. The system reads:

## dx/dt = 10y -10 x

##

## dy/dt = -y + 28 x -x z
##

## dz/dt = -2.667 z + x ¥y

The first hyperchaotic system
The first hyperchaotic system was introduced by Otto E. Rossler in 1979.12
## dx/dt = -z -y

##

## dy/dt =w + 0.25y + x
##

## dz/dt =3 + x z

##

## dw/dt = 0.05 w -0.5 z

This system is four-dimensional and has a single nonlinrearity xz in the third equation. The algorithms can
then be used to estimate the Lyapunov exponent spectrum:

M Edward N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., *vol. 20(2), 130-141, 1963.
120. E. Réssler, An equation for hyperchaos, Physics Letters A, 71, 155-157, 1979.

10



# Prepare the output file
outLyapFD <- NULL
# Method 2
outLyapFD$Grond <- lyapFDGrond(outLyapFD$Grond, nVar= 4, dMax = 2, coeffF = K,
tDeb = 0, dt = timeStep, tFin = 250, yDeb = c(-10,-6,0,10))

# Plot the results
plotMeanExponents(nVar, outLyapFD$Grond, nIterStats = 1000, expList = c(TRUE, TRUE, TRUE, FALSE), legen

Mean Lyapunov exponents
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The exponent corresponding to the flow direction is easy to identify when using method 2 (Grond et al.). The
exponent corresponding to it is plotted in blue. The subsequent exponents (in red and green respectively)
both converge to a positive value.

outLyapFD$Grond$meanExp

#it [,1] [,2] [,3] [,4]

## [1,] 0.009123498 0.1100914 0.01765182 -20.27899
outLyapFD$Grond$stdExp

## [,1] [,2] [,3] [,4]
## [1,] 1.457938e-05 0.0005196863 0.0006972188 0.00765801

Considering the two largest exponents (respectively in second and third positions) we get (0.11£5.27%;0.0176+
6.97%, and the Dy dimension can also be deduced from it.

outLyapFD$Grond$meanDky
## [,1]

## [1,] 2.00132
outLyapFD$Grond$stdDky
## [,1]

## [1,] 3.483726e-05

We get Dy = 3.00675 4 1.057°.

11



The hyperchaotic character of this system is thus effectively retrieved.

It should be noted however that mean value of the exponent corresponding to the flow direction is relatively
far from zero (0.009 £ 1.467°). Convergence has probably not been reached yet and it would be preferable to
consider a longer run to get more precise estimates.

Application to models obtained by the global modelling technique
e The 3D model for the coupled epizootic-epidemic of plague in Bombay (1896-1911)

An epidemic of bubonic plague broke out in Bombay, now Mumbai (India) in 1896. The bacillus Yersinia
Pestis had been discovered two years before only, and its mode of propagation was still unknown at this time.
Numerous investigations were carried out by an Advisory Committee appointed by the Secretary of State for
India, the Royal Society and the Lister Institute in 1905.' This committee set up in Bombay and started to
explore the plague disease in all possible directions. A considerable quantity of data of remarkable quality
was gathered and an important part of it was published in the Journal of Hygiene since 1906.'* Three time
series were extracted from this data set: the number of human death (hereafter noted ), the number of
contaminated brown rats (y), and the number of contaminated black rats (z). The global modelling technique
was applied to this data set!® from which five global models were obtained. The five models were built on
the same algebraic structure given by the following model:

# load the model

data(Plague)

# Model O (10-term)

# tuning

KLO <- Plague$models$model93

KLO[7,1] <- KLO[7,1]%0.598

visuEq(nVar = 3, dMax = 2, KLO, approx = 2, substit = 1)
## dx/dt = -0.0936 z"2 + 0.04307 y z -7.21646 x

#it
## dy/dt = 0.01026 y°2 =-0.02273 x y

##

## dz/dt = 0.04717 z"2 -3.28359 x -0.04858 x z + 0.0059 x y + 0.00436 x"2

# Model 1 (11-term) directly chaotic

KL1 <- Plague$models$model129

visuEq(nVar = 3, dMax = 2, KL1, approx = 2, substit = 1)
## dx/dt = -0.0936 z"2 + 0.04307 y z -12.06766 x

##
## dy/dt = 0.01026 y™2 -0.02273 x y

#it

## dz/dt = 0.03026 z°2 + 1.40991 y -6.23298 x -0.03395 x z + 0.00389 x y + 0.00532 x"2

This result was surprising because it was the first model for which an interpretation of all the terms could
be proposed, that was directly obtained from observational time series. Earlier studies, based on biological
considerations, had proven the possibility to transfer the disease from black to brown rats and from black rats
to human, but there was no dynamical proof that such a process could develop a large scale epidemic. This
model enabled to bring a strong argument for it. This model also revealed the efficiency of human action to
slow down the propagation of the desease. Finally, the model brought strong argument for chaos, that is (1)
a deterministic dynamics underlying the epidemic, and (2) a high sensitivity to the initial conditions.

o The 4D model for the epidemic of Ebola Virus Disease in West Africa (2013-2016)

13Plague Research Commission. The epidemiological observations made by the commission in Bombay City. Journal of
Hygienne, 7, 724-98, 1907.

Mhttp:/ /www.ncbi.nlm.nih.gov/pmc/journals/326/.

153, Mangiarotti, “Low dimensional chaotic models for the plague epidemic in Bombay (1896-1911), Chaos, Solitons, Fractals,
81(A), 184-196, 2015.
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The Ebola model'® was obtained from observational data using the GPoM package. In December 2013, an
epidemic of Ebola Virus Disease broke out in Guinea and spread out in Liberia and Sierra Leone and then
became uncontrollable. Data gathered by the World Health Organization was used to model the epidemic.
This data, based on the official publications of the Ministries of Health of the three main contries involved in
the epidemic, was made available online by the Centers for Disease Control and Protection,'” reported as
cumulative numbers (starting from the beginning of the epidemic).

Two variables were considered in the analysis: the cases of infections and deaths. Since almost all the cases
belong to a large scale area including Guinea, Liberia and Sierra Leone, time series resulting from the addition
of these three contributions were used. The following model was obtained using the global modelling technique

## dI/dt = 0.0001089 D1 D3 + 1.4135051 D1°2 -0.9815931 I D1

#

## dD1/dt = D2

##

## dD2/dt = D3

##

## dD3/dt = 5791.0763272 + 3.7447206 D3 + 2.25e-05 D372 -1921.2718525 D2 -0.1614398 D272 + 34650.5

with I the number of infections, Dy, the number of deaths, and D5, D3 its first and second derivatives.

Application to higher-dimensional systems

e A 5-D hyperchaotic dynamo system'® was derived by adding by adding two state feedback controls to
the 3D Rikitake two-disc dynamo system introduced by Tsuneji Rikitake in 1958.1% The resulting 5D
system reads:

## dX1/dt = 0.1 X5 -1.1 X4 + X2 X3 -X1

##

## dX2/dt = 0.1 X5 -1.1 X4 -X2 -2 X1 + X1 X3
##

## dX3/dt = 1 -X1 X2

##

## dX4/dt = 0.7 X2

##

## dX5/dt = 0.1 X4 + 0.1 X2 + 0.1 X1

e The 9-D model for a Rayleigh-Bénard convection in a square cell. The thermal convection in three-
dimenaional spatial domain are governed by the Boussinesq-Oberbeck equations. By applying a triple
Fourier expansion to this set of equations, Reiterer et al. obtained the following nine-dimensional
model?:

## dC1/dt = -0.2647 C7 + 0.0588 C4"2 + 1.7647 C3 C5 -C2 C4 -1.8889 C1

#

## dC2/dt = -0.26 C9 + C4 C5 -0.5C2 -C2C5 + Ci1C4

##

## dC3/dt = 0.2647 C8 -1.8889 C3 + C2 C4 -0.0588 C272 -1.7647 C1 C5
##

## dC4/dt = 0.25 C9 -0.5C4 +C4C56 -C2 C5 -C2 C3

16

see upper.

I7Centers for Disease Control and Prevention (2014), see http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
previous-case-counts.html for Ebola (Ebola Virus Disease).

18S. Vaidyanathan, V.-T. Pham & C.K. Volos, A 5-D hyperchaotic Rikitake dynamo system with hidden attractors, The
European Physical Journal, 224, 1575-1592, 2015.

197, Rikitake, Oscillations of a system of disk dynamos, Mathematical Proceedings of the Cambridge Philosophical Society,
54(1), 89-105, 1958.

20p, Reiterer, C. Lainscsek, F. Schiirrer, C. Letellier & J. Maquet, A nine-dimensional Lorenz system to study high-dimensional
chaos, Journal of Physics A, 31, 7121-7139, 1998.
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##

## dC5/dt = -0.2222 C5 -0.5 C472 + 0.5 C272

##

## dC6/dt = -3.5556 C6 -C4 C9 + C2 C9

##

## dC7/dt = -3.7778 C7 + 2 C5 C8 -C4 C9 -43.3 C1

#

## dC8/dt = -3.7778 C8 -2 C5 C7 + 43.3 C3 + C2 C9

##

## dC9/dt = -C9 + 43.3C4 +C4C7 +2C4C6 -43.3C2 -C2C8 -2 C2C6

Conclusion
In this tutorial, it is presented how to use the FDLyapu package to estimate the Lyapunov exponents spectrum

and the Kaplan-Yorke dimension, from ODEs in polynomial form which may be either defined manually, or
derived from observational time series using the GPoM package.
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