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1 Introduction
Observational studies on the effects of treatments are often done across a distributed network of health care
databases, with the following characteristics

• Sharing of individual patient data (IPD) is often not allowed due to patient privacy concerns
and local governance regulations.

• Patients are often exposed for varying lengths of time, and may stop being followed for various reasons,
making a time-to-event analysis with right-censoring such as a Cox proportional hazards regression
the most prevalent analysis.

• Due to the observational nature of the data, some correction for baseline differences between exposure
groups is often necessary to avoid confounding. This is often done by stratifying, matching, or
weighting by propensity score or disease risk score.

• Since data sites often differ in the population they capture or in their capture process, some hetero-
geneity between sites should be assumed to exist.

Because no IPD may be shared, data must be aggregated in some way to avoid patient identifiability before
communication. Current practice is to estimate the hazard ratio (with standard error) per database, and
combine these across sites using a traditional meta-analysis for random effects. However, with small counts
the true per-database likelihood function may no longer be approximately normally distributed, as is assumed
by this approach. Especially when zero events are observed in one of the treatment arms but not both, the
likelihood is far from normally distributed, yet still holds information on the parameter of interest. Even
though databases in a network are typically large in terms of the total number of patients covered, when
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restricting to patients having specific outcomes while exposed to specific treatments the numbers quickly
dwindle to numbers small enough for this issue to be of concern.

This vignette describes how this problem can be solved by using a non-normal approximation of the per-
database likelihood. The EvidenceSynthesis package supports various approximations of the likelihood that
are more appropriate when sample size is small and also still apply when sample sizes are large, allowing sites
to contribute information on the overall likelihood distribution of a parameter of interest (ie. the effect of the
treatment on the outcome) without sharing IPD. This package further provides functions for synthesizing the
likelihood approximations from the various sites to a single estimate.

2 Simulating some data
To demonstrate how to use the EvidenceSynthesis package, we will generate some simple simulated data.
For this, we will use the simulatePopulations() function included in the EvidenceSynthesis package:
library(EvidenceSynthesis)
simulationSettings <- createSimulationSettings(nSites = 5,

n = 10000,
treatedFraction = 0.75,
nStrata = 5,
hazardRatio = 2,
randomEffectSd = 0.5)

populations <- simulatePopulations(simulationSettings)

Here we specify we want to simulate 5 data sites, each with 10,000 subjects. Of these, 75% should be exposed
to the target treatment (the remaining 25% will be in the comparator cohort). At each site, the data are
stratified in to 5 strata (e.g. propensity score strata), each with a different baseline risk of the outcome. The
target hazard ratio is 2, but there is a random effect with standard deviation = 2 (ie. each site draws its
log(hazard ratio) from a normal distribution with mean = log(2) and standard deviation = 0.5).

The resulting populations object is a list of data frames, each with person-level data:

• x: Whether the subject is exposed to the target (1) or comparator (0).
• time: days of follow-up time (until end of observation or the occurrence of the outcome, whichever

came first).
• y: whether the outcome occurred (1) or not (0) at the end of follow-up.
• stratumId: an integer identifying the stratum (e.g. a propensity-score stratum).

3 Approximating the likelihood at each site
In a real study, we would not have all the person-level data available at one site. Instead, each site would
have their data behind their organization’s firewall, without the ability to share person-level data. To be
able to synthesize evidence across sites, we need to share information about the parameter of interest (the
effect size) without sharing person-level data. We can do this by approximating the likelihood function of the
parameter at each site, and communicating only the parameters of the approximation.

First, we fit our model for the effect of interest. For this we use the Cyclops package:
library(Cyclops)
# Assume we are at site 1:
population <- populations[[1]]

cyclopsData <- createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = population,
modelType = "cox")

cyclopsFit <- fitCyclopsModel(cyclopsData)
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If we are interested, we can see what the local estimate was of the hazard ratio and its confidence interval:
# Hazard ratio:
exp(coef(cyclopsFit))

## x
## 0.8000462

# 95% confidence interval:
exp(confint(cyclopsFit, parm = "x")[2:3])

## [1] 0.2965148 2.5159796

Note that an estimate may not exist at a database, for example if no one in the target or comparator group
has the outcome. However, the likelihood may still be informative.

Next, we approximate the likelihood function of our parameter of interest:
approximation <- approximateLikelihood(cyclopsFit, parameter = "x", approximation = "custom")
approximation

## mu sigma gamma
## 1 -0.2204294 0.5455648 -0.1293467

Here we use the custom parametric approximation, which in research has shown to provide a good approxi-
mation in many situations. This function has only three parameters (µ, σ, and γ). These parameters can be
shared with the study coordinator, without sharing patient-level data.

The EvidenceSynthesis package offers three types of approximation:

• “custom”: A custom parametric function designed to approximate a Cox likelihood function. This
function has three parameters (µ, σ, and γ).

• “normal”: A normal approximation of the likelihood. This is the traditional choice for meta-analysis,
but may not be appropriate when sample sizes are small. This function has two parameters (µ, and σ).

• "skew normal: Uses the skew normal distribution to approximate the likelihood. This function has
three parameters (µ, σ, and α).

• “grid”: Records the log likelihood at various pre-defined grid points. This function has as many
parameters as there are grid points, which by default is 991.

In case we’re interested, we can see how closely our fitted function approximates the likelihood:
plotLikelihoodFit(approximation = approximation,

cyclopsFit = cyclopsFit,
parameter = "x")

## Detected custom parameric approximation
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3.1 Generating approximations at all sites
For this example we will create the approximations for all sites in one short script. In reality, each site will
have to execute the code described above.
fitModelInDatabase <- function(population) {

cyclopsData <- createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = population,
modelType = "cox")

cyclopsFit <- fitCyclopsModel(cyclopsData)
approximation <- approximateLikelihood(cyclopsFit,

parameter = "x",
approximation = "custom")

return(approximation)
}
approximations <- lapply(populations, fitModelInDatabase)
approximations

## [[1]]
## mu sigma gamma
## 1 -0.2204294 0.5455648 -0.1293467
##
## [[2]]
## mu sigma gamma
## 1 1.631419 0.9599598 -0.21736
##
## [[3]]
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## mu sigma gamma
## 1 1.113098 1.04303 -0.2147777
##
## [[4]]
## mu sigma gamma
## 1 1.699838 0.947783 -0.2255899
##
## [[5]]
## mu sigma gamma
## 1 0.2528568 0.810072 -0.1684032

Here, for each population we fit the model, and create the approximation. The resulting object is a list of
approximations, one for each site.

4 Combining evidence across sites
Assuming we have gathered the approximations from all participating sites, we can now produce a single
estimate of the effect size. The EvidenceSynthesis package implements two different approaches to achieve
this: assuming fixed-effects, or using a Bayesian model for random-effects.

4.1 Fixed-effects model.
A fixed-effects model assumes the true effect size is identical at each site. This assumption is rea-
sonable if the sites are highly homogeneous, and have recruited very similar individuals. We use the
computeFixedEffectMetaAnalysis() function, which takes a single table containing all per-database ap-
proximations as input:
# Combine the various approximations into a single data frame, one row per database:
approximationsTable <- do.call(rbind, approximations)

# Do meta-analysis
estimate <- computeFixedEffectMetaAnalysis(approximationsTable)
estimate

## rr lb ub logRr seLogRr
## 1 2.051065 1.088817 4.188596 0.7183594 0.3436986

4.2 Bayesian random-effects model.
Alternatively, we can use a random-effects model, assuming that the effect sizes at each site might be slightly
different, but are all drawn from the same distribution of effect sizes. We assume that distribution is a normal
distribution with mean µ and standard deviation τ . Because such a model tends to be unstable when sample
sizes are small, we treat this as a Bayesian problem, and use Markov chain Monte Carlo sampling to sample
from the posterior distribution.

We can use the computeBayesianMetaAnalysis() function to combine the approximations into a single
estimate. This function also takes a single table containing all per-database approximations as input:
# Combine the various approximations into a single data frame, one row per database:
approximationsTable <- do.call(rbind, approximations)

# Do meta-analysis
estimate <- computeBayesianMetaAnalysis(approximationsTable)
exp(estimate[1:3])

## mu mu95Lb mu95Ub
## 1 2.179863 1.012596 4.953978
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We output the point estimate and 95% credible interval of our main parameter of interest µ, and exponentiate
these to convert to the hazard ratio scale.

We can also view the full posterior distribution:
plotPosterior(estimate)
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And the trace of the MCMC:
plotMcmcTrace(estimate)
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4.3 Choice of prior
The computeBayesianMetaAnalysis uses a normal and half-normal prior for the µ and τ parameters,
respectively. By default, the standard deviations are set to 2 for µ and 0.5 for τ . A standard deviation of 2
on the µ parameter expresses the belief of a 95% probability that the true value of µ is between -3.92 and
3.92, corresponding to hazard ratios from 0.02 to 50.40.

With less data, the choice of prior becomes more important. In a small-sample scenario, we may for example
choose a stronger prior on τ if we have reasons to believe between-site heterogeneity of the effect size will be
small:
estimate2 <- computeBayesianMetaAnalysis(approximationsTable, priorSd = c(2, 0.1))
exp(estimate2[1:3])

## mu mu95Lb mu95Ub
## 1 2.138004 1.072448 4.10942

Here we still use a prior with a standard deviation of 2 on µ, but for τ we specify a prior with a standard
deviation of 0.1 instead of 0.5. As can be seen by the narrow credible interval, this stronger prior on τ leads
to less uncertainty around µ.

5 Forest plot
We can plot the results using a standard forest plot:
# Make up some data site labels:
labels <- paste("Data site", LETTERS[1:length(populations)])
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plotMetaAnalysisForest(approximationsTable, labels, estimate)
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