
Bayesian Composition Estimator: manual

Karel Van den Meersche, Karline Soetaert

April 24, 2008

1 R

The Bayesian Composition Estimator (BCE) works as a package in the statistical software R. R
can be downloaded from the R-website http://cran.R-project.org.
The package ’bce’ can be installed in R like any regular R package. For now (22/11/2007), the
package is not available from the CRAN website but can be installed from the local zip file. It is
available as windows binary (bce x.x.zip) and from source (bce x.x.tar.gz).

1.1 installation from windows binary

Either use the menu tools in R-gui or at the command line:

> install.packages("BCE_x.x.zip", repos=NULL)

1.2 compile from source (linux)

in R:

> install.packages("BCE_x.x.tar.gz", repos=NULL, type="source")

or in console (as superuser):

R CMD INSTALL BCE_x.x.tar.gz

You can now load the package into R:

> library(BCE)

2 Demo: biomarkerComposition

An example script with two accompanying datasets is included in the package. ratiomatrix is a
matrix containing the biomarker concentrations per species in function of biomass, datamatrix is a
matrix containing the biomarker concentrations in function of biomass, measured in the samples.
The example file now performs sequentially 5 runs of the algorithm, using different parameter
settings. After each step we investigate the results and change settings to improve these results.
An overview of the different parameter settings is given in the next sections.

> demo(biomarkerComposition)

In the first analysis, we assume a relative standard deviation of 0.2 on ratio matrix and data
matrix. Other settings are chosen arbitrarily, with a low number of iterations to prevent long run
time.

1

> X <- BCE(ratiomatrix,datamatrix,Relsdrat=.2,Relsddat=.2,

+ iter=1000,outputlength=5000,

+ jmpx=.01,jmprat=.01,export=FALSE)

The number of accepted runs is too low; we play around with the jump lengths jmpx and jmprat:

> X <- BCE(ratiomatrix,datamatrix,Relsdrat=.2,Relsddat=.2,

+ iter=1000,outputlength=5000,

+ jmpx=.02,jmprat=.002,export=FALSE)

We want to inspect the output:

> plot(X)

Mixing is still a little poor. To optimize mixing in the ratio matrix, it is often a good idea to make
the jump length linear to the ratio matrix standard deviation (sdrat=.2*ratiomatrix) :

> X <- BCE(ratiomatrix,datamatrix,Relsdrat=.2,Relsddat=.2,

+ iter=1000,outputlength=5000,

+ jmpx=.02,jmprat=.2*(.2*ratiomatrix))

Mixing improved a lot; we repeat the run with more iterations to improve the reliability of the
results. The following run can take a few minutes.

> X <- BCE(ratiomatrix,datamatrix,Relsdrat=.2,Relsddat=.2,

+ iter=100000,outputlength=5000,

+ jmpx=.02,jmprat=.2*(.2*ratiomatrix))

3 How to get your data into R?

Usually data are stored in spreadsheets or databases. There are numerous ways to get this data
into R, one already more cumbersome than the other. One of the mostly recommended ways is to
save your data in a comma-delimited text file and subsequently read this file into R:

> ratiomatrix <- read.csv("ratiomatrix.csv",row.names=1)

> datamatrix <- read.csv("datamatrix.csv",row.names=1)

An often useful alternative is to use an open database connection (ODBC) to access the data
stored in a database. This has the advantage that if data is changed afterwards, one doesn’t need
to change any settings in the script to redo statistical analyses. Rerunning the script is sufficient.

> library(RODBC)

> channel1 <- odbcConnectExcel("data.xls")

> sqlTables(channel1)

> dataset1 <- sqlFetch(channel1, "sheet1",...)

> close(channel)

> library(RODBC)

> channel2 <- odbcConnectAccess("data.mdb")

> sqlTables(channel2)

> dataset2 = sqlQuery(channel2, "select * from query1")

> close(channel)

“query1” in this last line is the name of a query available in an Access database.
One can also insert data directly from the clipboard:

> dataset3 <- read.table("clipboard",header=TRUE)

2

Data stored in spreadsheets should be in the following format:

marker1 marker2 marker3 marker4
sample1 0.14717883 0.005304267 0.355269294 0.033341105
sample2 0.151750423 0.004587804 0.368153586 0.034655562
sample3 0.137554688 0.004045726 0.31392012 0.030437033
sample4 0.136817915 0.005077227 0.337021004 0.031906365
sample5 0.148508168 0.008032942 0.33873363 0.036519509
sample6 0.118413262 0.082297217 0.348727057 0.04499704

Also the ratio matrix should be in the same format:

marker1 marker2 marker3 marker4
species1 0.27 0.13 0.35 0.076
species2 0.084 0 0.5 0.24
species3 0.195 0.3 0 0.1
species4 0.06 0 0 0
species5 0 0 0 0
species6 0 0 0 0

You can then read your data into R using one of the aforementioned methods. If you also have
standard deviation data, read also these into the program in a similar way:

> sdrat <- read.csv("sdrat.csv", row.names = 1)

> sddat <- read.csv("sddat.csv", row.names = 1)

4 Functions

What follows is an overview of the main functions included in the BCE package.

4.1 BCE()

> result <- BCE(ratiomatrix, datamatrix,...)

4.1.1 parameter settings for BCE()

Parameter settings for the function BCE, with default values: parameters rat (ratio matrix) and
dat (data matrix) are the only obligatory parameters, but specification of some other parameters
is recommended.

3

Rat Initial ratio matrix
Dat Initial data matrix
relsdRat=0 relative standard deviation for ratio matrix; can be a single value, a vector

with length the number of biomarkers (1 value per biomarker) or a matrix
with the same dimensions as the ratio matrix.

abssdRat=0 absolute standard deviation for ratio matrix; use similar to relsdRat.
minRat=-Inf minimum value of ratio matrix; use similar to relsdRat
maxRat=+Inf maximum value of ratio matrix; use similar to relsdRat
relsdDat=0 relative standard deviation of data matrix; can be a single value, a vector with

length the number of biomarkers (1 value per biomarker) or a matrix with the
same dimensions as the data matrix.

abssdDat=0 absolute standard deviation of data matrix; use similar to relsdDat
tol = 1e-4 minimum standard deviation for data matrix
tolX = 1e-4 minimum X values for MCMC initiation (prevents numerical problems)

positive=1:ncol(Rat) which columns contain strictly positive data? Other columns can
become negative

iter = 100 number of iterations for MCMC
outputlength=1000 number of iterations kept in the output
burninlength=0 number of initial iterations to be removed from output
jmpRat = 0.01 jump length of Rat (also a vector with a value for each column, or

a matrix with dimensions like Rat is accepted)
jmpX = 0.01 jump length of X
unif = FALSE do we take uniform distributions for ratio matrix? (as in chemtax)
verbose=TRUE if FALSE, no feedback is provided during the run.
initRat=NULL here you can optionally give a starting ratio matrix for the MCMC

simulation.
initX=NULL here you can optionally give a starting composition matrix for the

MCMC simulation.
userProb = NULL posterior probability for a given ratio matrix and composition ma-

trix: should be a function with 2 arguments RAT and X, and as
returned value a number giving the log posterior probability of ratio
matrix RAT and composition matrix X. Dependence of the prob-
ability on the data should be incorporated in the function. If not
specified, the default probability distribution is the gamma function

confidenceInterval = 2/3 confidence interval in output; because the distributions are not sym-
metrical, standard deviations are not a useful measure; instead, up-
per and lower boundaries of the given confidence interval are given.
Default is 2/3 (equivalent to standard deviation), but a more or less
stringent criterion can be used.

export = FALSE logical; if TRUE, a list of variables and plots are exported to the
specified filename.

filename = ”BCE” Only if export is TRUE. If not NULL, a character string specifying
the filename for saved objects.

4.1.2 Output of BCE()

The output of the function BCE() is a list with 4 elements:

4

Rat array with dimension c(nrow(Rat),ncol(Rat),iter) containing the random walk val-
ues of the ratio matrix

X array with dimension c(nrow(X),ncol(X),iter) containing the random walk values
of the composition matrix

logp vector with length iter containing the random walk values of the log posterior
probability

naccepted integer indicating the number of runs that were accepted

The elements of this list can be used for further analyses, and for plotting. Three convenience
functions are implemented for accessing the results of BCE(): summary.bce() and export.bce().

4.2 summary.bce()

The output of summary.bce() is provided as a list. All elements in the list bceSummary can
be addressed by typing result$<name> or by attaching the result attach(bceSummary) and then
typing the <name>. The following objects are available in this list:

firstX X determined through least squares regression from the initial ratio matrix and the
data matrix

bestRat Ratio matrix for which the posterior probability is maximal
bestX Composition matrix for which the posterior probability is maximal
bestp Maximal posterior probability
bestDat Product of bestRat and bestX
meanRat Means of the elements of the ratio matrix
sdRat Standard deviation of the elements of the ratio matrix
lbRat Lower boundary of the confidence interval of the elements of the ratio matrix
ubRat Upper boundary of the confidence interval of the elements of the ratio matrix
covRat Covariance matrix of the elements of the ratio matrix
meanX Means of the elements of the composition matrix
sdX Standard deviation of the elements of the composition matrix
lbX Lower boundary of the confidence interval of the elements of the composition matrix
ubX Upper boundary of the confidence interval of the elements of the composition matrix
covX Covariance matrix of the elements of the composition matrix

4.3 plot.bce()

Calling the plot-function with a bce-object as argument, will produce a series of plots with the
random walks of all variables. The layout of these plots is kept very sober, as they are primarily
intended for inspection of the random walk (see section 5). The user is free to write her/his own
publication quality plots. Click or hit Enter to see the next plot, hit Esc to stop seeing new plots.

> result <- BCE(...)

> plot(result)

4.4 export.bce()

For people not familiar to R, it can be more “user-friendly” to set the parameter export in the
function BCE() to export=TRUE or export=<path/to/outputdirectory>. The same result is ob-
tained if you use the function export.bce() on a BCE object.
All summary output will be written to the specified folder or to a new folder out, created in the
working directory. An R object containing all the results is saved and can be called using the func-
tion load(). Summary results are written to separate .csv files that can be read into a spreadsheet
program. Also will the MCMC output be plotted into .png files. Take a good look at these plots
before accepting your results (see next section).

5

5 Producing sensible output

5.1 mcmc

Markov Chain Monte Carlo simulations are not as straightforward as one might wish; several
preliminary runs might be necessary to determine the desired number of iterations, burn-in length
and jump length. Figure 1 shows what a good random walk should look like (a) and should
certainly not look like (b).

0 2000 6000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

a

iterations

x

0 200 400 600 800

0.
25

0.
30

0.
35

0.
40

0.
45

b

iterations

x

Figure 1:

• jump length The jump length determines how big the jumps are for each step in the random
walk. A longer jump length will make you jump around faster in the parameter space, but
acceptance of new points can get very low. Smaller jump lengths increase the acceptance
rate, but the algorithm will move too slowly, and a lot more runs will be needed to scan the
whole parameter space. A good way to find a good jump length, is look at the number of
points accepted. If the output is saved under the name MCMC, you can find the number
of accepted points under MCMC$naccepted. It is also given if you run the model with
verbose=TRUE (default). This value should be somewhere between 5% and 40%. For long
runs, 5 % can be acceptable, for short runs, you will prefer a higher acceptance in order to
have enough different points. 20% accepted is usually a good number. Do some preliminary
runs with iter=1000-10000 and tune the jump lengths. You can set different jump lengths
for each column of the ratio matrix, or 1 jump length for the whole ratio matrix, and 1 jump
length for the composition matrix. Decreasing the jump lengths will generally increase the
acceptance rate and vice versa. Also the mixing rate (the speed with which accepted points
change their values) will be influenced. You want this mixing rate to be as high as possible.

• burninlength The program uses the solution of lsei using the original ratio matrix as
starting values for the MCMC. This might in some cases be far from the optimal solution,
and the MCMC algorithm will start with moving towards this optimal solution. This is
called a burn-in. When there is a slow mixing rate, this can take a considerable number of
cycles. As it can influence the averages and standard deviations, you might want to remove
it from the mcmc objects. By defining a burnin length, the first <burninlength> cycles will
not be written to the output. Look at some plots to determine if you need to specify a
burnin length (fig 2)

6

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

iterations

x

Figure 2: parameter values show a clear trend in the first 1200 cycles, left from the dashed line;
we call this a burn-in. You can remove it from the output by setting the parameter burninlength.

• iter the number of iterations: start with 10000 runs; check the mcmc output and estimate
how many runs you will need to get a random pattern in the output (fig 1a).

7

	R
	installation from windows binary
	compile from source (linux)

	Demo: biomarkerComposition
	How to get your data into R?
	Functions
	BCE()
	parameter settings for BCE()
	Output of BCE()

	summary.bce()
	plot.bce()
	export.bce()

	Producing sensible output
	mcmc

