Bayesian Probit Choice Modeling


[Up] [Top]

Documentation for package ‘RprobitB’ version 1.2.0

Help Pages

as_cov_names Re-label alternative specific covariates
check_form Check model formula
check_prior Check prior parameters
choice_probabilities Compute choice probabilities
classification Preference-based classification of deciders
coef.RprobitB_fit Extract model effects
compute_p_si Compute choice probabilities at posterior samples
cov_mix Extract estimated covariance matrix of mixing distribution
create_lagged_cov Create lagged choice covariates
d_to_gamma Transform increments to thresholds
fit_model Fit probit model to choice data
get_cov Extract covariates of choice occasion
gibbs_sampler Gibbs sampler for probit models
ll_ordered Compute ordered probit log-likelihood
mml Approximate marginal model likelihood
model_selection Compare fitted models
mode_approx Gibbs sample mode
npar Extract number of model parameters
npar.RprobitB_fit Extract number of model parameters
overview_effects Print effect overview
plot.RprobitB_coef Extract model effects
plot.RprobitB_fit Visualize fitted probit model
plot.RprobitB_mml Approximate marginal model likelihood
plot_class_allocation Plot class allocation (for 'P_r = 2' only)
plot_mixture_contour Plot bivariate contour of mixing distributions
plot_roc Plot ROC curve
point_estimates Compute point estimates
predict.RprobitB_fit Predict choices
pred_acc Compute prediction accuracy
prepare_data Prepare choice data for estimation
print.RprobitB_coef Extract model effects
print.RprobitB_mml Approximate marginal model likelihood
print.RprobitB_model_selection Compare fitted models
print.RprobitB_parameter Define probit model parameter
RprobitB_parameter Define probit model parameter
R_hat Compute Gelman-Rubin statistic
sample_allocation Sample allocation
simulate_choices Simulate choice data
train_choice Stated Preferences for Train Traveling
train_test Split choice data into train and test subset
transform.RprobitB_fit Transform fitted probit model
update.RprobitB_fit Update and re-fit probit model
update_b Update class means
update_b_c Update mean of a single class
update_classes_dp Dirichlet process class updates
update_classes_wb Weight-based class updates
update_coefficient Update coefficient vector
update_d Update utility threshold increments
update_m Update class sizes
update_Omega Update class covariances
update_Omega_c Update covariance of a single class
update_s Update class weight vector
update_Sigma Update error covariance matrix
update_U Update utility vector
update_U_ranked Update ranked utility vector
update_z Update class allocation vector