Sensitivity Analysis for Irregular Assessment Times


[Up] [Top]

Documentation for package ‘SensIAT’ version 0.2.0

Help Pages

add_class Adds an S3 class to an object
add_terminal_observations Add Terminal Observations to a Dataset
autoplot.SensIAT_fulldata_jackknife_results Plot for estimated treatment effect for 'SensIAT_fulldata_jackknife_results' objects
autoplot.SensIAT_fulldata_model Plot for estimated treatment effect for 'SensIAT_fulldata_model' objects
autoplot.SensIAT_withingroup_jackknife_results Plot estimates at given times for 'SensIAT_withingroup_jackknife_results' objects
autoplot.SensIAT_within_group_model Plot a 'SensIAT_within_group_model' object
compute_influence_terms Compute Influence Terms
compute_influence_terms.default Compute Influence Terms
compute_influence_terms.SensIAT::Single-index-outcome-model Compute Influence Terms
fit_SensIAT_fulldata_model Produce fitted model for group (treatment or control)
fit_SensIAT_within_group_model Produce fitted model for group (treatment or control)
jackknife Perform Jackknife resampling on an object.
jackknife.SensIAT_fulldata_model Perform Jackknife resampling on an object.
jackknife.SensIAT_within_group_model Perform Jackknife resampling on an object.
pcoriaccel_estimate_pmf Directly estimate the probability mass function of Y.
pcoriaccel_evaluate_basis Compiled version of 'evaluate_basis()' function
pcoriaccel_evaluate_basis_mat Compiled version of 'evaluate_basis()' function (matrix version)
predict.SensIAT_fulldata_model Predict mean and variance of the outcome for a 'SensIAT' within-group model
predict.SensIAT_within_group_model Predict mean and variance of the outcome for a 'SensIAT' within-group model
SensIAT_example_data SensIAT Example Data
SensIAT_example_fulldata SensIAT Example Data
SensIAT_fit_marginal_model Title
SensIAT_jackknife Estimate response with jackknife resampling
SensIAT_jackknife_fulldata Estimate response with jackknife resampling
SensIAT_prepare_data Prepare data for SensIAT analysis
SensIAT_sim_outcome_modeler Outcome Modeler for 'SensIAT' Single Index Model.
SensIAT_sim_outcome_modeler_fbw Outcome Modeler for 'SensIAT' Single Index Model.
SensIAT_sim_outcome_modeler_mave Single Index Model using MAVE and Optimizing Bandwidth.
sensitivity_expected_values Compute Conditional Expected Values based on Outcome Model
sensitivity_expected_values.glm Compute Conditional Expected Values based on Outcome Model
sensitivity_expected_values.lm Compute Conditional Expected Values based on Outcome Model
sensitivity_expected_values.negbin Compute Conditional Expected Values based on Outcome Model